CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ascaad2016_001
id ascaad2016_001
authors Al-Attili, Aghlab; Anastasia Karandinou and Ben Daley
year 2016
title Parametricism vs Materialism - Evolution of digital technologies for development
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, 597 p.
summary We build on previous technological developments in CAAD by looking into parametric design exploration and the development of the concept of parametricism. We use the phenomenological backdrop to account for our physical experiences and encounters as well as our mental ones; both evident in the link between parametric design as a process and an outcome. In specific, we previously examined two particular metaphors. The first metaphor addressed aspects of virtual environments that resemble our physical world; In other words, computer model as physical model and digital world as material world. In this volume, we extend the exploration into aspects of virtual environments and their resemblance to physical environments by looking at ‘performance’ aspects: the way in which environments are sensed, measured, tracked and visualised. Moreover, we reflect on matters and materiality in both virtual and physical space philosophically, theoretically, practically and reflectively. The second metaphor looked into the modes and means of interaction between our bodies and such virtual environment. Here we extend the investigation to look at the ways in which measures of environmental performance influence human interaction in real environments. The exploration takes us further to look into the area of design fabrication of the built environment, and methods in which developed processes meet environmental performance requirements, and the innovative outcomes that lead to disruptive technologies getting introduced into design and we revisit parametric design under this focus area.
series ASCAAD
type normal paper
email
last changed 2024/02/13 14:28

_id ascaad2016_058
id ascaad2016_058
authors Assassi, Abdelhalim; Djemaa Benmechirah and Rachida Samai
year 2016
title Visibility Map - Exploratory study of urban planning for future city design
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 579-588
summary Through space we can read the acts and the daily activities of human being and, we can also understand different interactions within any social unit. This paper explain how specially the space type can interpret why the human being derives to a negative behavior like "Crime". So, in this study we adopt the visibility approach which is developed by the laboratory of space syntax (UCL), and which makes a sense for the link between the space design and its use and its positive or negative social consequences in the future. Then, the purpose of this paper is to present the importance of the use of visibility map which can also be an outlook approach for detecting potential hot-spots in urban planning designs specially of new cities, for avoiding the negative using of urban spaces like "Crime" in the future. The case of study is the new city of Ali Mendjeli (Constantine - Algeria), the capital of the East of Algeria known by a very fast demographic and urban growth. After analyzing a central urban neighborhood of this city using Depthmap, we found thirty-four hot-spots which can be appropriate spaces for the exercise of crime in the future, and we found that this point was downplayed in the urban planning designs before the realization of Ali Mendjeli new city.
series ASCAAD
email
last changed 2017/05/25 13:34

_id sigradi2016_375
id sigradi2016_375
authors García Amen, Fernando; Payssé, Marcelo
year 2016
title La ciudad inteligente, un palimpsesto digital. El caso Fray Bentos [Smart City, a digital palimpsest. Case study Fray Bentos]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.849-852
summary The aim of this paper is to present the partial results of the project "La ciudad inteligente; un palimpsesto digital", which is currently being developed. The project focuses into the emerging paradigm of Smart cities from a regional perspective, transcending the timeless notion of urban-rural dichotomy, to focus on the territory as an integral cultural landscape. Reflection, but also experimentation on specific social-based technological applications applied to territory studies, constitute an essential tool in building the reality of a smart city. From the design and implementation of a strategic action plan designed to be completed in four years, this paper shows objectives, theoretical basis, used tools and partial results of the experiment carried out in the Paisaje Industrial Fray Bentos, recently declared "World Heritage" by UNESCO.
keywords Empowering; heritage; Smart cities; cultural landscape; fray bentos
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_215
id ecaade2016_215
authors Kouchaki, Mohammad, Mahdavinejad, Mohammadjavad, Zali, Parastoo and Ahmadi, Shahab
year 2016
title Magnet-based Interactive Kinetic Bricks
doi https://doi.org/10.52842/conf.ecaade.2016.1.213
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 213-218
summary Brick has been used in construction since ancient times and has been respected among other tectonic materials through out the history. Novel technologies recently have opened new horizons in using brick in architectural design. This paper investigates innovative implementation of bricks in kinetic architecture. Kinetic structures usually employ complex and high-cost mechanisms to come into force and their movements might be limited to some conditions. By the use of magnet in digital design, this research examines new methods for performing simple and affordable kinetic structures so as to create interactive relations between architecture and human being. Magnetic energy is applied in two ways to move a roof made of brick which is considered a heavy and masonry material. Consequently, it represents the hidden potentials of magnet as a renewable source of energy.
wos WOS:000402063700024
keywords kinetic architecture; interactive design; parametric design; Bricklaying; magnet energy
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia16_78
id acadia16_78
authors Parker, Matthew; Taron, Joshua M.
year 2016
title Form-Making in SIFT Imaged Environments
doi https://doi.org/10.52842/conf.acadia.2016.078
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 78-87
summary Within the contemporary condition, turbulence that confronts architecture is no longer unpredictable weather patterns or wild beasts, but the unintended forces of a constantly connected digital infrastructure that demands constant attention. If, as Mark Wigley puts it, “architecture is always constructed in and against a storm” it is time for architecture to reevaluate its ability to separate us from a new storm-one that situates technology, global connectivity, human, non-human and composite users, and algorithmic architecture itself as new weather systems. Toward this end, this paper explores architecture’s ability to mediate and produce algorithmic turbulence generated through image-based sensing of the built environment. Through a close reading of Le Corbusier’s Urbanisme, we argue that for much of the 20th and the early part of the 21st century, cities have been designed to produce diagrams of smooth and homogenous flows. However, distributed personal technologies produce virtual layers that unevenly map onto the city, resulting in turbulent forces that computational platforms aim to conceal behind a visual narrative of accuracy, cohesion, anticipation, and order. By focusing on SIFT algorithms and their ability to extract n-dimensional vectors from two-dimensional images, this research explores computational workflows that mobilize turbulence towards the production of indeterminate form. These forms demarcate a new kind of challenge for both architecture and the city, whereby a cultural appetite to deploy algorithms that produce a smooth and seamless image of the world comes hand in hand with the turbulent and disruptive autonomy of those very same algorithms. By revisiting Urbanisme, a new set of architectural objectives are established that contextualize SIFTS within an urban agenda.
keywords complex morphology, sift algorithms, architectural representation, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id acadia16_24
id acadia16_24
authors Savov, Anton; Buckton, Ben; Tessmann, Oliver
year 2016
title 20,000 Blocks: Can gameplay be used to guide non-expert groups in creating architecture?
doi https://doi.org/10.52842/conf.acadia.2016.024
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 24-33
summary The paper follows research in engaging groups of non-trained individuals in the creation of architectural designs using games and crowdsourcing for human-directed problem-solving. With the proposed method, architectural experts can encode their design knowledge into custom-developed multiplayer gameplay in Minecraft. Non-expert players then are constrained by this gameplay which guides them to create unique architectural results. We describe a method with three components: guiding rules, verification routines and fast feedback. The method employs a real-time link between the game and structural analysis in Grasshopper to verify the designs. To prove the viability of these results, we use robotic fabrication, where the digital results are brought to reality at scale. A major finding of the work is the suite of tools for calibrating the balance of influence on the resulting designs between the Experts and the Players. We believe that this process can create designs which are not limited to parametrically optimal solutions but could also solve real-world problems in new and unexpected ways.
keywords robot-human collaboration, digital fabrication, gaming in design, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id sigradi2016_392
id sigradi2016_392
authors Ascui Fernández, Hernán; Arias Jiménez, Nelson
year 2016
title Mapeo digital a través de la diversificación de peque?os recursos visuales para potenciar la creatividad y la autonomía de los estudiantes de primer a?o en el taller de proyecto [Experiential mapping through simple digital resources to boost creativity and empower freshmen students in the design workshop]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp. 7-13
summary This paper expounds the teaching strategies used to introduce architecture students in the craft of design in the course Taller de Proyecto 1. These strategies are based on experiential mappings constructed from different digital resources allowing constantly confront design with real life, in order to maintain, throughout the process, a sensitive and precise relationship between reality and experience. It concludes that these methodologies strengthen the autonomy of students, developing a valuable reconnection with the way they look and transform the world, validating the premise that the act of design is an innate human act and not necessarily an erudite one.
keywords Experiential mapping; digital resources; teaching of architecture
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac201614201
id ijac201614201
authors Dorta, Toma?s; Gokce Kinayoglu and Michael Hoffmann
year 2016
title Hyve-3D and the 3D Cursor: Architectural co-design with freedom in Virtual Reality
source International Journal of Architectural Computing vol. 14 - no. 2, 87-102
summary Hybrid Virtual Environment 3D (Hyve-3D) is a system that allows architectural co-design inside Virtual Reality by a new model of interaction through a 3D cursor. It augments the concept of the cursor to better interact with three- dimensional virtual spaces, rethinking it as a drawing/control plane and viewpoints inside the virtual world. Handheld tablets intuitively manipulate 3D cursors. Users can simultaneously access their individual complementary views on the tablets as personal windows into the shared immersive display. They can concurrently sketch in three dimensions, transform, and manipulate three-dimensional objects using the tablets as tangible props and collectively navigate the scene using the tablet as a 3D trackpad. The system implementation and co-design assessments of different settings are presented.
keywords Co-design, virtual reality, human-computer interaction, 3D cursor and 3D sketching
series journal
last changed 2016/06/13 08:34

_id sigradi2016_426
id sigradi2016_426
authors Lima, Fernando; Kos, Jose Ripper; Montenegro, Nuno
year 2016
title Otimizaç?o multi-objetivo e Desenvolvimento Orientado pelo Transporte: algoritmos evolutivos em estratégias de planejamento urbano [Multi-objective optimization and Transit Oriented Development: evolutionary algorithms in urban planning strategies]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.601-608
summary This paper presents a computational approach to provide assessment and optimization of principles from Transit Oriented Development (TOD) - an urban development model that advocates compact, walkable, and mixed-use neighborhoods, centered around transport stations. In spite of being increasingly promoted around the world, TOD lacks an approach that addresses multivariate data for optimization of its principles. In this paper, we propose an algorithmic-parametric methodology, applied to a neighborhood unit in a case study. The objective is to demonstrate the potential of algorithmic approaches towards a more dynamic management of the large amount of data involved in DOT implementation methodologies.
keywords Transit Oriented Development; Multi-objective optimization; Urban planning
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.382
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id sigradi2016_000
id sigradi2016_000
authors Martin Iglesias, Rodrigo
year 2016
title Crowdthinking
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016
summary The topic "Crowdthinking" reveals the inquiries of researchers about collaborative work, distributed intelligence and collective research. The call focuses on transdisciplinary thinking as a construct based on multiplicity and diversity. All these topics are essential not only in the field of design and architecture, but also in emerging areas of human sciences and arts . Currently, the collaborative design is considered one of the key bases for change in the city and society. In its genesis, it manifests the notion that the world around us is inadequate for many of the needs of the society and from that design can be collectively improved. Such collective research, by combining distributed intelligence, sustainable social development, design cutting edge research, theories and computational strategies, generates a research partnership based on participation and distributed cognition of complex problems. This call proposes an approach in which the results of the experiences can build a model, define or apply axioms and lead to applications. It also looks for emerging conjectures about the process, the creation of computer models and the behaviour of the resulting designs. On the other hand, the need to find solutions that improve the quality of life for the community and sustainable development includes concerns about the integration of the physical and cultural context of cities, mass education and the inclusion of parametric design, digital manufacturing and digital prototyping, and BIM as a system that organizes and ensures the correspondence between the physical urban design and sustainable archetypes. These are some of the concerns in which technology has been contributing to improve the design process by integrating information. This integration optimizes resources and enables the various project professionals to work on the same model, run simulations, improve materializations and evaluate massive amount of data. Projects with greater social and environmental responsibility can be achieved adopting into the teaching and practice this new way of design that anticipates an extensive exchange that wilt foster self-evaluation and reformulation of educational paradigms.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_801
id sigradi2016_801
authors Matson, Carrie Wendt; Sweet, Kevin
year 2016
title Simplified for Resilience: A parametric investigation into a bespoke joint system for bamboo
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.405-411
summary Research reveals that most of the structural failures in a natural disaster are related to improper construction assembly methodologies related to human errors. This paper aims to reduce human errors in the building process by taking advantage of computational tools, and using a renewable building material. The research investigates the creation of a novel structural system for bamboo that is able to be repaired, replaced, altered, and easily assembled to restore any damaged building structure. Bamboo is an organic product with diameters that are irregular and unpredictable. The inconsistency in this natural product requires an adaptable construction methodology that responds to its organic nature. A customised joint system is created using parametric software that quickly adapts to the irregularity of the bamboo and are then fabricated using additive printing techniques. The parametric software gives unlimited control of the joint system based on the programmed relationships between the differentiations of each unique bamboo connection. Fabricating each unique joint gives a secure connection at each intersection facilitating an adaptable architecture, whilst reducing construction waste. This paper introduces the groundwork for the implementation of “on-site” manufacturing of a framework joint system. The manufacturing utilises the power and performance of a parametric platform with the technology of bespoke three-dimensionally printed joints – a flexible system that can respond to organic materials and natural external conditions
keywords Parametric design; Three-dimensional printing; Bamboo construction
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_562
id sigradi2016_562
authors Oliveira, Ana Mansur de; Guimar?es, Celso Pereira
year 2016
title Voo ou cela: o papel da tecnologia na criaç?o do imprevisível [practices in post-digital environment in the career of Industrial Design]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.949-953
summary This paper analyzes different roles of technology in the creative process of contemporary visuality. Technology apparatus have their own rules, to which the operator submits, plenty of the times in a certain illusion of exercising a genuine freedom of creation. The danger of this illusion is an atrophy of the access to the imaginative capacities of the human being. Therefore, it is necessary to notice this kind of coercion operated by technology. Is the apparatus that seems to seduce the creator to a non-human place, somehow magic, in which the illusion of control can obstruct the access to the real potency of imagination.
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_193
id ecaade2016_193
authors Oliveira, Rui and Sousa, Jose Pedro
year 2016
title Building Traditions with Digital Research - Reviewing the Brick Architecture of Raúl Hestnes Ferreira through Robotic Fabrication
doi https://doi.org/10.52842/conf.ecaade.2016.1.123
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 123-131
summary Brick construction has a strong tectonic tradition in architecture, being used both as a structural and as an expressive material. Despite several technological innovations at the composition and production level, its application still relies on talented craftsmanship, which has some natural human limitations and has becoming harder to find in the present days. To overcome this problem, robotic assembly technologies have been introduced in the field, opening new design and construction possibilities. In this context, this paper intends to examine their application but from a different perspective, by examining how they can be used to connect with the traditions in brick construction. To do so, it presents and analyses the work of Portuguese architect Raúl Hestnes Ferreira, and develops a computational design and robotic fabrication research on the topics of corner, column and dome bricks. The production of a column design at the 1:1 scale using an automated process serves to reflect on the relevance of new technologies to innovate in accordance to tradition.
wos WOS:000402063700014
keywords Brick Construction; Hestnes Ferreira; Robotic Assembly; Computational Design; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_281
id caadria2016_281
authors Pinochet, Diego
year 2016
title Making - Gestures: Continuous design through real time Human Machine interaction
doi https://doi.org/10.52842/conf.caadria.2016.281
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 281-290
summary Design is “something that we do” that is related to our unique human condition as creative individuals, so as “making” is related to how we manifest and impress that uniqueness into our surrounding environment. As designers, the way we impress our ideas into the material world is tightly connected to a ‘continuous creative performance’ and with concepts often missing in digital design and fabrication techniques –yet present in analog processes - such as ambiguity, improvisation and imprecision. In this paper, a model of human-machine interaction is proposed, that seeks to transcend the ‘hylomorphic’ model imperative in today’s digital architectural design practice to a more performative and reciprocal form of computational making. By using body gestures and imbuing fabrication machines with behaviour, the research seeks to embrace the concept of ‘performance and error’ as promoters of creativity and cognition about the things we create, installing human as the bond of the interrelations between designing and making.
keywords Human machine interaction; computational making; machine learning; digital design and fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2016_483
id sigradi2016_483
authors Quintella, Ivvy Pedrosa Cavalcante Pessôa; Flor?ncio, Eduardo Quintella; Ferreira, Ítalo Cintra
year 2016
title Making pavilions: Os pavilh?es temporários no contexto das faculdades de arquitetura e urbanismo [Making pavilions: The temporary pavilions in the context of schools of architecture and urbanism]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.318-325
summary This paper aims to highlight the educational potential of the association between the architectural typology of temporary pavilions and digital fabrication process for architecture and urban planning courses. The pavilion theme is being increasingly exploited in various universities in the world, in order to work new paradigms of computational algorithmic architecture and new construction process, through digital fabrication labs. In this sense, these exercises can become a privileged and highly effective learning tool, due the impact of the integrated experience between creating (design), construction (to build) and experience (to appropriate the spaces).
keywords Temporary pavilions; Digital manufacturing; Rapid prototyping; Construction; Architecture education
series SIGRADI
email
last changed 2021/03/28 19:59

_id sigradi2016_498
id sigradi2016_498
authors Santos, Gabriela Bonifacio dos; Raposo, Marinah; Matta, Roberto Da; Cavalcanti, Caio
year 2016
title Tecnologia no Desenvolvimento da Arte Interativa [Technology in the Development of Interactive Art]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.326-330
summary This article is the result of a project that has been developed in ten days during an academic workshop. The goal was to overcome the force of gravity by producing an environment sensitive to human actions. The action indicated to the group, “soil peeling”, was conceptually idealized by creating an atmosphere that had the ability to subvert the force of gravity. The premise of the project was to support a critical attitude towards anthropocentric movement by emphasizing the individualistic character inherent to contemporary human being. This attitude has been represented by reversing the forces hierarchy. The power to control gravity was then assigned to the agent and, while they were in touch with the installation, they would have full control over a natural phenomenon and could handle it in their favor.
keywords Parametric design; Digital manufacturing; Responsive environment; Rapid prototyping; Anthropocene
series SIGRADI
email
last changed 2021/03/28 19:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_191603 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002