CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
doi https://doi.org/10.52842/conf.acadia.2016.332
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id sigradi2016_484
id sigradi2016_484
authors Shahmiri, Fereshteh; Gentry, Russell
year 2016
title A Survey of Cable-Suspended Parallel Robots and their Applications in Architecture and Construction
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.914-920
summary Serial, aerial and solid-linked parallel robots are unable to handle large payloads in building-scale workspaces for on-site applications and are thus best suited for automated fabrication in plant settings. In contrast, Cable Suspended Parallel Robots or CSPRs are able to handle large loads and traverse great distances as required on building construction sites. This paper reviews the existing literature and practice to bridge the gap between our understanding of CSPRs and their applicability to building-scale tasks such as full-scale concrete printing and building façade installation. The research identifies key activities in CSPRs fabrication workflows. Using a comparative approach, the paper investigates five CSPR variants and assesses the performance characteristics. A simple kinematic model of each CSPR is developed and implemented as a Rhino/Grasshopper script to aid in the performance assessment of each system. The paper concludes with a ranking of CSPR systems and their likely applicability to full-scale implementation on a construction site.
keywords Cable Suspended Parallel Robots; CSPR; Automation; AEC
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_203
id ecaade2016_203
authors Michalatos, Panagiotis and Payne, Andrew
year 2016
title Monolith: The Biomedical Paradigm and the Inner Complexity of Hierarchical Material Design
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 445-454
doi https://doi.org/10.52842/conf.ecaade.2016.1.445
wos WOS:000402063700049
summary This paper discusses our ongoing research into hierarchical volumetric modeling and the external forces which are motivating a shift from the traditional boundary representation (also known as BREP) that has thus far dominated design software toward a more flexible voxel-based representation capable of describing complex variable material distributions. We present Monolith; a volumetric modelling application which explores hybrid forms of digital representations and new design workflows that extend a designer's ability to describe the material properties of a 3d model at the mesoscopic and even microscopic scales. We discuss the inherent complexities in volumetric modelling and describe the design opportunities which heretofore were unavailable using existing techniques.
keywords hierarchical materials; multi-material 3d printing; voxels
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_124
id acadia16_124
authors Ferrarello, Laura
year 2016
title The Tectonic of the Hybrid Real: Data Manipulation, Oxymoron Materiality, and Human-Machine Creative Collaboration
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 124-129
doi https://doi.org/10.52842/conf.acadia.2016.124
summary This paper describes the latest progress of the design platform Digital Impressionism (DI), created by staff and students in the Information Experience Design programme at the Royal College of Art in London. DI aims to bridge human creative thinking with machine computation, under the theoretical method/concept of oxymoron tectonic. Oxymoron tectonic describes the process under which hybrid materiality, that is the materiality created between the digital and the physical, takes form in human-machine creative interactions. The methodology intends to employ multimaterial 3D printers in combination with data manipulation (a process that gives data physical substance), pointclouds, and the influence of intangible environmental data (like sound and wind) to model physical forms by interfacing digital and physical making. In DI, modeling is a hybrid set of actions that take place at the boundary of the physical and digital. Through this interactive platform, design is experienced as a complex, hybrid process, which we call a digital tectonic; forms are constructed via a creative feedback loop of human engagement with nonhuman agents to form a creative network of sustainable and interactive design and fabrication. By developing a mutual understanding of design, machines and humans work together in the process of design and making.
keywords human-computer interaction and design, craft in design computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_169
id ecaade2016_169
authors Garcia, Manuel Jimenez
year 2016
title Soft Modelling - Open source Java application for flexible structural systems
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 265-274
doi https://doi.org/10.52842/conf.ecaade.2016.2.265
wos WOS:000402064400026
summary Contemporary advanced simulation software allow for a higher accuracy in the understanding of material behaviour. The increase in computational power is enabling designers to get much closer to real time physical simulations, which facilitates the inheritance of those tools in their design workflows.However, the use of those tools is normally limited to a series of specific steps within the entire workflow, rather than a feature integrated in the design process itself.Softmodelling is an open source Java application which aims to bridge this gap by seamlessly integrating physical simulations in every step of the design process, giving designers the ability to not only test structural behaviours of a given output, but also allow them to design while taking both structural stability and material behaviour into account at every stage.This paper will discuss the design and evolution of the software, as well as showcase physical prototypes which explore the possibilities of such design methods. These projects are fundamental in materialising the evolution of Softmodelling, towards becoming an application that does not only enable the design of flexible elements, but also facilitates their manufacturing and assembly into large scale structures.
keywords Particle-spring systems; Dynamic relaxation; Physics Simulation; Flexible materials; Discrete Computation; Open source; Design Software
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2016_028
id ascaad2016_028
authors Modesitt, Adam
year 2016
title Adaptive Collaboration in Project Delivery
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 259-268
summary Digital workflows in architectural design have upended traditional models of collaboration. As digitally networked tools further permeate the project delivery process, information and knowledge are increasingly distributed seamlessly across decentralized networks. While the seamless flow of information across digital networks can serve to augment traditional hierarchies of production, it can also change fundamentally the process by which architecture is produced, enabling modes of collaboration in which creation and production occur as decentralizing acts. This paper examines current models, methods and theories of decentralized collaboration in digitally networked architectural production, towards the goal of establishing a framework for understanding the meta-controls and standards that structure it. Particular emphasis is given to the emerging process of crowdsourcing, in which design intelligence emerges collectively from a decentralized network of actors and agents. This study serves as the foundation for a proposed model of ‘adaptive collaboration,’ in which an adaptive set of meta-controls and standards change in response to the evolving roles and scopes among individual actors and agents. An experiment in Adaptive Collaboration is described, taking place in a Solar Decathlon project at the New Jersey Institute of Technology.
series ASCAAD
email
last changed 2017/05/25 13:31

_id caadria2016_673
id caadria2016_673
authors Roupe?, Mattias; Mikael Johansson, Mikael Viklund Tallgren, Fredrik Jo?Rnebrant and Petru Andrei Tomsa
year 2016
title Immersive visualisation of Building Information Models: Usage and future possibilities during design and construction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 673-682
doi https://doi.org/10.52842/conf.caadria.2016.673
summary The design process of a building often involves many dif- ferent actors and people with different experiences, level of knowledge and ability to interpret information. The most common in- formation media in these processes are 2D-drawings, documents and 3D images of design. These media can be difficult to interpret and un- derstand and could cause communication difficulties and design er- rors. However, in this context, Building Information Modelling (BIM) and Virtual Reality (VR) have been shown to offer an efficient com- munication platform. In this paper we present and evaluate a portable immersive visualisation system that uses the BIMs directly from the design tools. The system is validated in a real construction project, where the different disciplines in the design process used the system. The result was collected through interviews and observation during usage of the system. All the participants expressed that this type of visual interface helped them to get another level of understanding and perception of space, which lead to better decision-making process and resolving of design issues.
keywords Building information modelling; virtual reality; head mounted display; Oculus Rift
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_110
id ecaade2016_110
authors Verniz, Debora, Mateus, Luis, Duarte, José Pinto and Ferreira, Victor
year 2016
title 3D Reconstruction Survey of Complex Informal Settlements - Towards an understanding of the genesis of form
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 365-370
doi https://doi.org/10.52842/conf.ecaade.2016.2.365
summary The Brazilian favelas are a kind of informal settlements characterized by steep topography and a maze-like structure. Like many other settlements of its kind that are prevalent in developing countries today, they are often considered a problem rather than a solution. This paper is part of a larger research that taking a realistic stand aims to understand the formal structure of this city-shaping force and capture it into a rule-based, computational model. The goal is to develop appropriate requalifying procedures to intervene in informal settlements and guidelines for designing formal settlements in similar sites. The paper is focused on the use of digital technologies to reconstruct in 3D a favela used as a case study, a preliminary step to understand its formal structure and create a computational model.
keywords 3D reconstruction; informal settlement; Santa Marta; SFM; 3D Point Cloud
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2016_353
id caadria2016_353
authors Yuan, Feng; Shuyi Huang and Tong Xiao
year 2016
title Physical and numerical simulation as a generative design tool
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 353-362
doi https://doi.org/10.52842/conf.caadria.2016.353
summary Environmentally sound and high-performance buildings are contributing towards a sustainable future. With increased density of contemporary urban space and the urgent desire to promote building performance, a better understanding of wind behaviour will positively influence future design explorations. In the traditional sequential ar- chitectural practice, there is a gap between design and performance simulation. This paper presents an experimental and systematic study of the performance-oriented design tools, strategies and workflows utilized in the concept prototyping of a high-rise building. It describes a new approach to incorporate wind tunnel testing, computational flu- id dynamics simulation as well as parametric software, sensors and open-source electronics platform into an accessible, interactive and low-cost form generation kit, rapidly evaluating the performance of potential design options in the early design stage. As indicated in this research, environmental simulation can be a decision-making tool, in- tegrating the concept of continuity into the design process.
keywords Environmental performance; building aerodynamics; wind tunnel testing; computational fluid dynamics
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
doi https://doi.org/10.52842/conf.caadria.2016.797
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2016_564
id sigradi2016_564
authors Alló, Leticia; Pazmino, Ana Veronica
year 2016
title Design de Contrabaixo Elétrico e Aplicaç?o da Prototipagem 3D [Electric Bass Design and Application of 3D Prototyping]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.986-990
summary The objective of this study is to show the development of a bass with the application of rapid prototyping and manufacturing process. During the development of the product was used Solid Works software to model instrument, which was subsequently embodied in a 3D printer. The article presents the iterative development that involves: test, analyze and improve the prototypes. As a result the article presents a bass model with some requirements such as innovation, customization, acoustics and ergonomics
keywords Prototyping; Contrabass; 3D printing.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia16_352
id acadia16_352
authors Farahi, Behnaz
year 2016
title Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 352-361
doi https://doi.org/10.52842/conf.acadia.2016.352
summary This paper describes the design process behind Caress of the Gaze, a project that represents a new approach to the design of a gaze-actuated, 3D printed body architecture—as a form of proto-architectural study—providing a framework for an interactive dynamic design. The design process engages with three main issues. Firstly, it aims to look at form or geometry as a means of controlling material behavior by exploring the tectonic properties of multi-material 3D printing technologies. Secondly, it addresses novel actuation systems by using Shape Memory Alloy (SMA) in order to achieve life-like behavior. Thirdly, it explores the possibility of engaging with interactive systems by investigating how our clothing could interact with other people as a primary interface, using vision-based eye-gaze tracking technologies. In so doing, this paper describes a radically alternative approach not only to the production of garments but also to the ways we interact with the world around us. Therefore, the paper addresses the emerging field of shape-changing 3D printed structures and interactive systems that bridge the worlds of robotics, architecture, technology, and design.
keywords eye-gaze tracking, interactive design, 3d printing, smart material, programmable matter, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id caadria2016_549
id caadria2016_549
authors Fischer, Thomas and Christiane M. Herr
year 2016
title Parametric Customisation of A 3D Concrete Printed Pavilion
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 549-558
doi https://doi.org/10.52842/conf.caadria.2016.549
summary Advances in 3D printing technology have reached architectural scales with 3D concrete printing, a digitally controlled fabrication process in which fibre-reinforced concrete is deposited layer-by-layer to fabricate building elements. In this paper we present a brief overview of key concrete 3D printing related research development efforts, followed by a report on a research project into the parametric online customisation and fabrication of small 3D concrete printed pavilions. The research project is set in, and addresses possibilities and constraints of, the developing local Chinese construction context.
keywords 3D concrete printing; parametric design; digital fabrication; online customisation; China
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2016_441
id sigradi2016_441
authors Flor?ncio, Eduardo Quintella; Ferreira Segundo, Dilson Batista; Quintella, Ivvy Pedrosa Cavalcante Pessôa
year 2016
title O futuro do processo construtivo? A impress?o 3d em concreto e seu impacto na concepç?o e produç?o da arquitetura [The future of constructive process? The 3d concrete printing and its impact on architectural conception and production]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.305-309
summary This article aims to discuss the 3D concrete printing technology for use in construction, which promises to generate economic gains and benefits for the environment. It also search for a potential impact of this technology over the current architecture design and construction methods, assessing its viability opposite the context of the research and practical construction in Brazil. From the partial results of the analysis, listed out to potential and difficulties related to the implementation of this technology.
keywords 3D concrete printing; automated construction; digital fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_779
id sigradi2016_779
authors Granero, Adriana Edith; Paganini, Ana Livia; Hölzel, Gabriel
year 2016
title Creación asistida por tecnología [Assisted creation by technology]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.285-289
summary This research explores the integration and use of applications, digital devices and social networks for the creation of architectural design. We propose a teaching model for teaching morphological architectural representation with different models but integrated. On the study will show the sequence of activities linked to the different models and work on them. For activity using social networks of all kinds, the implementation of 3D printing peripherals, the use of own design uses three significant companies are encouraged: Autodesk, Graphisoft & Mc. Neel.
keywords Natural education, interaction, educational innovation, Gamefulness, architectural education, higher education
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_589
id caadria2016_589
authors Grigoriadis, Kostas
year 2016
title Translating Digital to Physical Gradients
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 589-598
doi https://doi.org/10.52842/conf.caadria.2016.589
summary As the practice of using notations to translate from two to three-dimensions is becoming superseded by the direct relaying of building information digitally, the separation between designing and building is diminishing. A key aspect in lessening further this divi- sion, is heterogeneous materiality that supersedes component thinking and effectively tectonics. Being an embodiment of the redundancies of tectonic assembly, a curtain wall detail has been redesigned with a heterogeneous and continuous multi-material using CFD. The main research problem following this redesign has been the conversion of material data from the CFD program into a 3D-printable format and in order to achieve a closer linkage between design and building. This has been pursued by initially converting the fused material parameters into fluid weight data and eventually into RGB colour values. The re- sulting configuration was output initially as a multi-colour print and effectively fabricated in a multi-material.
keywords Multi-materials; CFD; 3D-printing; autography
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_924053 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002