CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 580

_id caadria2016_767
id caadria2016_767
authors De Azambuja Varela, Pedro and Timothy Merritt
year 2016
title CorkVault Aarhus: exploring stereotomic design space of cork and 5-axis CNC waterjet cutting
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 767-776
doi https://doi.org/10.52842/conf.caadria.2016.767
summary This paper presents the design, fabrication, and construc- tion of CorkVault Aarhus, which was designed using parametric and physics simulation software and realized from ECA cork sheets cut using a CNC waterjet cutter. We recount the lessons learned through the intensive two-week workshop that explored the limits of the mate- rials and tools through prototypes and culminated with the assembly of the final free-form vault structure. Various vaults and arch proto- types provided pedagogical and research value, building up knowledge essential to the final structure built, a human scale pavilion designed and built in three days and made of a thin shell of cork pan- els working only in compression. Three driving concepts were crucial to the experience: stereotomy as a supporting theory, expanded cork agglomerate (ECA) as the main material and water jet cutting as the principal means of fabrication. The complex vault shape called for precise 5-axis cuts supporting a new paradigm in building stereotomic components for architecture.
keywords Stereotomy; generative algorithm; digital fabrication; waterjet; cork
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_105
id ecaade2016_105
authors Bialkowski, Sebastian and Kepczynska-Walczak, Anetta
year 2016
title IT Driven Architectural Design for All?
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 283-290
doi https://doi.org/10.52842/conf.ecaade.2016.1.283
wos WOS:000402063700032
summary This paper discusses teaching parametric design as a supportive method of introducing design logic. Two case studies have been described, analysed and concluded. The first case study focuses on a workshop based design of a parametric pavilion, which resulted of building 1:1 scale object. The second case study concentrates on the academic compulsory course providing parametric design knowledge based on a particular topic imposed by tutors. In both cases the main purpose was to get students being accustomed to a different way of thinking, to open their minds to new approaches to design process and to demonstrate a connection between programming skills and imagination capabilities. Each of the cases returned valuable guidelines for design studio pedagogy which has also been revealed in this paper.
keywords design logic; parametric; design pedagogy
series eCAADe
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2016_737
id sigradi2016_737
authors Costa, Phillipe Cunha da
year 2016
title Purple Haze vs Don Giovanni: a experi?ncia de mashup no Pavillion 21 MINI Opera Space de Coop Himmelb(l)au [Purple Haze vs Don Giovanni: the mashup experience in the Coop Himmelb(l)au’s Pavillion 21 MINI Opera Space]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.572-578
summary Recurring theme in architectural design, the relations between architecture and music in contemporary times have important discussions about parametric and cryptographic methods of notation. Through the Pavilion 21 MINI Opera Space, the ephemeral space for the Baviera State Opera, design by Wolf Prix and his office Coop Himmelb(l)au, we pretend to understand some concepts of notation and sound phenomena in architecture. This pavilion dialogue between the Xenakis notes and the electronic music advent, specially the composition methods of mixing like mashup, as simulations of the object.
keywords Architecture and music; graphic notation; parametric simulation; soundscaping; Coop Himmelb(l)au
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
doi https://doi.org/10.52842/conf.caadria.2016.415
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_549
id caadria2016_549
authors Fischer, Thomas and Christiane M. Herr
year 2016
title Parametric Customisation of A 3D Concrete Printed Pavilion
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 549-558
doi https://doi.org/10.52842/conf.caadria.2016.549
summary Advances in 3D printing technology have reached architectural scales with 3D concrete printing, a digitally controlled fabrication process in which fibre-reinforced concrete is deposited layer-by-layer to fabricate building elements. In this paper we present a brief overview of key concrete 3D printing related research development efforts, followed by a report on a research project into the parametric online customisation and fabrication of small 3D concrete printed pavilions. The research project is set in, and addresses possibilities and constraints of, the developing local Chinese construction context.
keywords 3D concrete printing; parametric design; digital fabrication; online customisation; China
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2016_654
id sigradi2016_654
authors Frogheri, Daniela; Estévez, Alberto T.
year 2016
title Entre el pensar y el hacer avanzados [Between the advanced thinking and the advanced making]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.219-226
summary This paper presents a study about the introduction of the digital design and the digital fabrication from the first steps of the designer education. The work is developed through the relationship between the advanced thinking and the advanced making, applied into a undergraduate studio where, a process of generation of form and its materialization are concretized into the design and the fabrication of full scale pavilions.
keywords Design pedagogy; Digital morphology; Generative design; Digital fabrication; Parametric pavilion
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_249
id caadria2016_249
authors Kuma, Taichi
year 2016
title Iterative design process between physical modelling and computational simulation for pre-tensioned grid shell structure
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 249-258
doi https://doi.org/10.52842/conf.caadria.2016.249
summary Grid shell structures are widely used in many types of buildings. In this paper the author proposes a new grid shell structure, which is pre-tensioned by stretchable membrane. Through iterative process between physical modelling and computational simulation, one pavilion is finally presented as a demonstration of the architectur- al performance of this structure.
keywords Material computation; form finding; pavilion; grid shell; active bending
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ascaad2016_037
id ascaad2016_037
authors Wannan, Samer R.
year 2016
title Teaching Parametric Design in Architecture - A Case Study
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 357-366
summary The increasing technological advancements nowadays make the integration of digital tools and techniques in architecture pedagogy a must. A course in the department of architecture at Birzeit University in Palestine was proposed as a summer course in order to introduce students to the possibilities of using digital parametric tools and techniques in architecture design and manufacturing. In reflection of the experiment of the course, in which students were asked to design and construct a temporary pavilion, the paper will examine the potentials and challenges of using parametric digital tools in architecture design, and the way students imagine and conceive the performance of their design ideas virtually and practically. Furthermore, the project proposes that form is not constrained to the form-making process, but form must be a response to a material system and its properties, and thus material should be engaged in the design process. Initial design ideas are explored by building a parametric 3D digital model using a visual scripting platform. This virtual model allows for the evaluation of the performance of the design and the assembly method before realization and, moreover, experiments with design alternatives and forms. The final full-detailed digital model will be used in the fabrication phase to construct a one-to-one scale physical model in the real world, which gives students the chance to get sense and interact with the implemented environment and to experience their designs in real world.
series ASCAAD
email
last changed 2017/05/25 13:33

_id acadia16_196
id acadia16_196
authors Yuan, Philip F.; Chai, Hua; Yan, Chao; Zhou, Jin Jiang
year 2016
title Robotic Fabrication of Structural Performance-based Timber Gridshell in Large-Scale Building Scenario
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp 196-205
doi https://doi.org/10.52842/conf.acadia.2016.196
summary This paper investigates the potential of a digital geometry system to integrate structural performance-based design and robotic fabrication in the scenario of building a large-scale non-uniform timber shell. It argues that a synthesis of multi-objective optimization, design and construction phases is required in the realization of timber shell construction in architecture practice in order to fulfill the demands of building regulation. Confronting the structural challenge of the non-uniform shell, a digital geometry system correlates all the three phases by translating geometrical information between them. First, a series of structural simulations and experimentations with different objectives are executed to inform the particular shape and tectonic details of each shell component based on its local condition in the geometrical system. Then, controlled by the geometrical system, a hybrid process of different digital fabrication technologies, including a customized robotic timber mill, is established to enable the manufacture of the heterogeneous shell components. Ultimately, the Timber Structure Enterprise Pavilion as the demonstration and evaluation of this method is fabricated and assembled on site through a notational system to indicate the applicability of this research in practical scenarios.
keywords robotic fabrication, geometrical information modeling, simulation and design optimization, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
wos WOS:000402063700058
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_048
id ascaad2016_048
authors Al Shiekh, Bassam
year 2016
title Arabic Calligraphy and Parametric Architecture - Translation from a calligraphic force to an architectural form
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 469-482
summary This paper describes an on-going research that unites two distinct and seemingly unrelated interests. One is Arabic calligraphy and the other is parametric architecture. The effort is to integrate these interests and, in doing so, balance cultural issues with technological ones, traditional with contemporary and spiritual with material. Moreover, this paper is inspired by Arabic calligraphy and its influence on Zaha Hadid’s designs; it is invigorated by parametric systems and their capacity as a source of architectural forms. This paper will observe the rising importance of computation technologies to architecture, which has always been a form of negotiation between ‘function and fiction’ and ‘force and form’. The paper proposes a Parametric Calligraphic Machine that simultaneously produces, connects and separates calligraphic surfaces, calligraphic images and calligraphic reality. Therefore, the goal is to examine this hypothesis in order to produce a set of techniques, tools and methods that inform the three-dimensional design process of Arabic calligraphy’s contemporary possibilities by addressing a process description rather than a state description of creating calligraphic images and calligraphic surfaces. The theoretical approach highlights issues pertaining to calligraphy, spatiality, translation, generative systems, parametric design, visual structure, force and form.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_008
id ascaad2016_008
authors Armstrong, Logan; Guy Gardner and Christina James
year 2016
title Evolutionary Solar Architecture - Generative Solar Design Through Soft Forms and Rigid Logics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 55-64
summary This paper describes the development of a workflow for the production of a net zero off-grid research cabin.  The workflow deploys a number of affiliated parametric software packages as a form finding tool for the exterior envelope of this structure, with a focus on passive solar design as a generative formal driver. The design was required to incorporate the spatial and programmatic needs of the users in a compact, barrier free, net zero building. Simultaneously, the research question asked the designers to harness the potential of digital design in the consideration of future fabrication techniques, in order to optimize the building’s performance and the speed and quality of assembly once the project moves into construction. Parameters considered include solar exposure, external surface area, cost, fabrication, functionality, and aesthetic criteria. This project was developed by a multidisciplinary team of graduate students at the University of Calgary.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2017_280
id ecaade2017_280
authors Baldissara, Matteo, Perna, Valerio, Saggio, Antonino and Stancato, Gabriele
year 2017
title Plug-In Design - Reactivating the Cities with responsive Micro-Architectures. The Reciprocal Experience
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2017.2.571
summary Every city has under utilized spaces that create a series of serious negative effects. Waiting for major interventions, those spaces can be reactivated and revitalized with soft temporary projects: micro interventions that light up the attention, give new meaning and add a new reading to abandoned spaces. We can call this kind of operations "plug-in design", inheriting the term from computer architecture: interventions which aim to involve the citizens and activate the environment, engage multiple catalyst processes and civil actions. Plug-in design interventions are by all meanings experimental, they seek for interaction with the users, locally and globally. Information Technology - with its parametric and site-specific capabilities and interactive features - can be instrumental to create such designs and generate a new consciousness of the existing environment. With this paper we will illustrate how two low-budget interventions have re-activated a forgotten public space. Parametric design with a specific script allowing site-specific design, materials and structure optimization and a series of interactive features, will be presented through Reciprocal 1.0 and Reciprocal 2.0 projects which have been built in 2016 in Italy by the nITro group.
keywords reciprocal frame; parametric design; responsive technology; plug-in design; interactivity; re-activate
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_095
id caadria2016_095
authors Gu, Ning; Rongrong Yu and Michael Ostwald
year 2016
title Computational Analysis and Generation of Traditional Chinese Private Gardens through Space Syntax and Parametric Design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 95-104
doi https://doi.org/10.52842/conf.caadria.2016.095
summary This research develops a methodological framework for computational analysis and generation of traditional Chinese private gardens, powered by two well-known algorithms in the field, with Space Syntax for analysis and parametric design for generation. Ap- plying this framework, the paper commences with an analysis of two different categories of Chinese private gardens using selected Space Syntax techniques. Next, mathematical measurements derived from the analysis are used as the basis to capture essential spatial patterns in these two garden types. These quantitative results are then used to di- rect the development of a parametric design system to generate new design instances that share the same spatial patterns of the original traditional Chinese private gardens. The effectiveness of this computa- tional approach is demonstrated through two case studies, Yuyuan Garden and Wangshiyuan Garden, both located in Southeast China and each representing a different category of traditional Chinese pri- vate gardens with a typical planning structure. The outcomes of the paper contribute to potential new insights about these important herit- age sites, and demonstrate a formal approach to their computational analysis and generation.
keywords Computational design analysis; generative design; Space Syntax; parametric design; traditional Chinese private gardens
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_163
id ecaade2016_163
authors Harding, John
year 2016
title Evolving Parametric Models using Genetic Programming with Artificial Selection
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 423-432
doi https://doi.org/10.52842/conf.ecaade.2016.1.423
wos WOS:000402063700047
summary Evolutionary methods with artificial selection have been shown to be an effective human-computer technique for exploring design spaces with unknown goals. This paper investigates an interactive evolution of visual programs currently used in popular parametric modelling software. Although parametric models provide a useful cognitive artifact for designers to interact with, they are often bound by their topological structure with the designer left to adjusting (or optimising) metric variables as part of a design search. By allowing the topological structure of the graph to be evolved as well as the parameters, artificial selection can be employed to explore a wider design space more suited to the early design stage.
keywords genetic programming; parametric design; artificial selection; evolutionary design; design exploration
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2016_363
id sigradi2016_363
authors Hemmerling, Marco; Mazzucchi, Alessio
year 2016
title Colonna Curva: A case study on curved folding for the production of architectural components []
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.677-680
summary The research presented in the paper focuses on computational folding. Besides the well-known straight folded structures, like the classical Miura fold, curved folding opens up more complex spatial configurations and delivers at the same time more performative structural effects, as the bended surfaces resulting from the curved crease folding enhance the overall-stiffness of the structure. Against this background the paper discusses the potential of curved folding techniques for the design and fabrication of architectural components. The findings are illustrated in a case study that documents the prototypical realization of a curved column in scale 1:1.
keywords Curved folding; developable surfaces; deployable structures; parametric design; digital fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_241
id ecaade2016_241
authors Janssen, Patrick, Stouffs, Rudi, Mohanty, Akshata, Tan, Elvira and Li, Ruize
year 2016
title Parametric Modelling with GIS
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 59-68
doi https://doi.org/10.52842/conf.ecaade.2016.2.059
wos WOS:000402064400005
summary Existing urban planning and design systems and workflows do not effectively support a fast iterative design process capable of generating and evaluating large-scale urban models. One of the key issues is the lack of flexibility in workflows to support iterative design generation and performance analyses, and easily integrate into design and planning processes. We present and demonstrate a parametric modelling system, Möbius, that can easily be linked to Geographic Information Systems for creating modular workflows, provides a novel approach for visual programming that integrates associative and imperative programming styles, uses a rich topological data structure that allows custom data attributes to be added to geometric entities at any topological level, and is fully web-based. The demonstration consists of five main stages that alternate between QGIS and Möbius, generating and analysing an urban model reflecting on site conditions and using a library of parametric urban typologies, and uses as a case study an urban design studio project in which the students sketched a set of rules that defined site coverage and building heights based on the proximity to various elements in the design.
keywords generative design; urban planning; Geographic Information Systems; parametric modelling
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_197
id ecaade2016_197
authors Jovanovic, Marko, Stojakovic, Vesna, Tepavcevic, Bojan, Mitov, Dejan and Bajsanski, Ivana
year 2016
title Generating an Anamorphic Image on a Curved Surface Utilizing Robotic Fabrication Process
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 185-191
doi https://doi.org/10.52842/conf.ecaade.2016.1.185
wos WOS:000402063700021
summary The integration of industrial robots in the creative art industry has increased in recent years. Implementing both brick stacking robotic fabrication, following a curved wall, and generating an image viewed from a single point, by rotating the bricks around their centres, has yet to be studied. The goal of this research is to develop a functional, parametric working model and a workflow that ensure easy manipulation and control of the desired outcome via parameters. This paper shows a workflow for the automatic generation of anamorphic structures on a curved wall by utilizing modular brick-like elements. As a result, a code for the robot controller and the position of the structure during fabrication are provided.
keywords anamorphosis; brick lying; robotic fabrication; generative design
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2016_636
id sigradi2016_636
authors Lacroix, Igor; Paranhos, Paulo Henrique; Aviani, Francisco Leite; Silva, Neander Furtado
year 2016
title Estudo de detalhamento estrutural da Catedral de Palmas – TO, Brasil [Structural study of Palmas Cathedral, Brazil]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.528-533
summary This article presents a study for the structure of Palmas Cathedral, designed by architect Paulo Henrique Paranhos. The goal is to gather a set of parametric modeling and rapid prototyping techniques, aiming the efficiency and automation of parts of the design and fabrication process for the steel truss that constitutes the coverage of the project in question. It discusses the expansion of the architect’s work field. Once the professional holds the application of advanced technologies focusing on construction and manufacturing, will be able to take responsibility for parts of the engineering design.
keywords Collaboration; Parametric design; Rapid prototyping; Structural design; Steel structure
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_871815 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002