CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 248

_id ecaade2016_157
id ecaade2016_157
authors Kulcke, Matthias and Lorenz, Wolfgang E.
year 2016
title Utilizing Gradient Analysis within Interactive Genetic Algorithms
doi https://doi.org/10.52842/conf.ecaade.2016.2.359
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 359-364
summary The paper describes and discusses the possible integration of gradient analysis, as a method and tool for architects and designers to analyze the degree of proportion-complexity of a design, into the process of designing an object utilizing interactive genetic algorithms (IGA). A VBA implementation for AutoCAD has been developed by the authors, enabling to test the usability of genetic algorithms (GA) for minimizing the angle-redundancy and length-redundancy quotient. The gradient analysis itself has been developed on the basic assumption that the complexity of an objects appearance is reduced by redundancy, which can be measured focussing on different levels of comparison; among others e. g. variety of material, colour-combinations and proportion. The latter comes under scrutiny if the method of gradient analysis is applied.
wos WOS:000402064400035
keywords Gradient Analysis; Interactive Genetic Algorithm; Design Complexity; Redundancy; Spatial Analysis; Form and Geometry; Proportion
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_291
id caadria2016_291
authors Hotta, K. and A. Hotta
year 2016
title The Implementation of Programmable Architecture: Wireless Interaction with Dynamic Structure
doi https://doi.org/10.52842/conf.caadria.2016.291
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 291-299
summary True adaptability in architecture necessitates both dynamic hardware and software with the potential for continually renewable forms capable of all possible variations necessary for changing de- mands and conditions, without having to resort to one theoretically optimal solution. PA consists of both autonomous and subservient systems that maintain a constant homeostasis within its contained en- vironment. The information flow between the Genetic Algorithms (GA) and user input prompts this hybrid system to generate the conse- quent, ever-changing physical form, while continuously optimizing it for environmental stimuli. This paper proposes a smart strategy for a human interactive-cybernetic architecture in the context of K. Hotta’s Programmable Architecture (PA), aimed at enhancing GA’s capabili- ties in continuous self-modelling and facilitating human-computer in- terface.
keywords Human-computer interaction; user interface
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac201614401
id ijac201614401
authors Mark, Earl and Zita Ultmann
year 2016
title Environmental footprint design tool: Exchanging geographical information system and computer-aided design data in real time
source International Journal of Architectural Computing vol. 14 - no. 4, 307-321
summary The pairing of computer-aided design and geographical information system data creates an opportunity to connect an architectural design process with a robust analysis of its environmental constraints. Yet, the geographical information system data may be too overwhelmingly complex to be fully used in computer-aided design without computer-assisted methods of filtering relevant information. This article reports on the implementation of an integrated environment for three-dimensional computer-aided design and environmental impact. The project focused on a two-way data exchange between geographical information system and computer-aided design in building design. While the two different technologies may rely on separate representational models, in combination they can provide a more complete view of the natural and built environment. The challenge in integration is that of bridging the differences in analytical methods and database formats. Our approach is rooted in part in constraint-based design methods, well established in computer-aided design (e.g. Sketchpad, Generative Components, and computer-aided three-dimensional interactive application). Within such computer-aided design systems, geometrical transformations may be intentionally constrained to help enforce a set of design determinants. Although this current implementation modestly relates to geometrical constraints, the use of probabilistic risk values is more central to its methodology.
keywords Boolean analysis, area overlay analysis, attribute classification, data transition using .csv, vectorization, risk analysis, site planning
series journal
email
last changed 2016/12/09 10:52

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2016_301
id caadria2016_301
authors Datta, S.; T. W. Chang and J. Hollick
year 2016
title Curating architectural collections: Interaction with immersive stereoscopic visualisation
doi https://doi.org/10.52842/conf.caadria.2016.301
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 301-310
summary We present our research on the use of immersive stereo- scopic visualisation in interaction with collections of architectural rep- resentations. We investigate the processing and visualisation of multi- ple model representations from architectural datasets. We develop two models for locating collections of datasets in spatial contexts, namely a realistic gallery and a synthetic landscape. We evaluate and report the qualitative interactive experience with two forms of contextual in- teraction within a novel stereoscopic immersive visualisation (cylin- drical projection) environment. The use of immersive stereoscopic visualisation conveys aspects and dimensions of the collections that would not be possible without the forms of contextual interaction, the gallery metaphor and the synthetic landscape to interact with the ar- chitectural collections. The combination of abstract representations with realistic sense of scale and interaction provide the user with an immersive experience to convey the collective form.
keywords Digital data acquisition; architectural reconstruction; geometry processing and algorithms; immersive stereoscopic visualisation; human computer interaction
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_094
id ecaade2016_094
authors Kontovourkis, Odysseas and Konatzii, Panagiota
year 2016
title Optimization Process Towards Robotic Manufacturing in Actual Scale - The Implementation of Genetic Algorithms in the Robotic Construction of Modular Formwork Systems
doi https://doi.org/10.52842/conf.ecaade.2016.1.169
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 169-178
summary The application of optimization processes in architectural design has gained significant attention among architects and recently has become a driving force towards more robust, reliable as well as flexible design investigations. Such application, require handling of multiple parameters, aiming at finding the range of possible solutions in morphological or topological problems of optimization, mostly during the design decision-making process and under the influence of functional, environmental, structural, or other design criteria. This ongoing research investigation puts forward the hypothesis that optimization processes might be equally applied during the construction decision-making process where architectural systems are examined in terms of their ability to be statically efficient and easily manufactured through the use of robotic machines. This is important to exist within a bidirectional platform of communication where the design decision-making will inform decision taken during pre-construction stage and vise versa. In order to test our hypothesis, two case studies are developed that implements genetic algorithms to examine the geometric and static behavior as well as the construction ability of proposed flexible three-dimensional modular formworks and overall systems for concrete casting, aiming to be robotically manufactured in actual scale.
wos WOS:000402063700019
keywords Optimization process; genetic algorithms; robotic manufacturing; modular formwork system.
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2016_150
id ecaade2016_150
authors Barczik, Günter and Kruse, Rolf
year 2016
title Shifting Design Work from Production to Evaluation - An Evolutive Design Tool
doi https://doi.org/10.52842/conf.ecaade.2016.2.109
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 109-115
summary We are developing an evolutive design tool that seeks to facilitate a shift in the focus of the process of designing architecture: away from the production of design alternatives or options towards an evaluation of semi-automatically generated ones. We work towards outsourcing the production of design alternatives in a given design task to a CAD tool and thereby give human designers more time to evaluate and discuss those alternatives and guide the tool in the production of improved alternatives. The format of our work is an experimental student design and research project where architects and computer scientists collaborate. Though the project is in a very early stage, our aim is to ultimately shift the focus of human designers' involvement from production of design options to the evaluation of those, in order to give humans more time to think, discuss, find, analyze and include many different points of view and make it easier for them to be impartial in finding optimal solutions. We developed a design tool that uses interactive evolutionary algorithms to support exploration of design options.
wos WOS:000402064400010
keywords Genetic Algorithm; Evolutive Design Strategy; Interactive evolutionary computation
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_063
id caadria2016_063
authors Kawiti, Derek; Marc Aurel Schnabel and James Durcan
year 2016
title Indigenous Parametricism - Material Computation.
doi https://doi.org/10.52842/conf.caadria.2016.063
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 63-72
summary The use of computational formats and digital tools includ- ing machine fabrication by indigenous people worldwide to augment traditional practices and material culture is becoming more and more commonplace. However within the practice of architecture while there are indigenous architectural practitioners utilizing digital tools, it is unclear as to whether there is motivation to implement traditional in- digenous knowledge in conjunction with these computational instru- ments and methodologies. This paper explores how the tools might be used to investigate the potential for indigenous development, cultural empowerment and innovation. It also describes a general methodology whereby capacity can be shared between academia and indigenous groups to foster new knowledge through a recently implemented in- digenous focused design research entity, SITUA. The importance and significant research potential of what we term 'domain based research' is reinforced through the exploration of emergent materials and build- ing systems located within specific tribal domains. A recent project employing 3D clay extrusion printing is used to illustrate this ap- proach.
keywords Indigenous domain based research: Maori; materials; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id ascaad2016_038
id ascaad2016_038
authors Rabboh, Emad H.; Ali A. Elmansory
year 2016
title Utilizing CAAD in the Design Studio to Consolidate with Professional Practices - Pedagogical approach
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 367-374
summary Utilization of computer-aided architectural design CAAD in architectural design studio has its problems. Recently, CAAD has been over used within education, , and applied, presumably, more efficiently in professional contexts.. Noticeably, time available for the application of CAAD in architectural firms outweights that of academy. Consequently, it has to be utilized effectively and efficiently in the design studio. The current study proposes and discusses techniques to expand and consolidate CAAD utilization in the design studio by analysing stages of work of design professionals, as well as the utilization of CAAD in architectural firms, in the first phase. The second phase looks at the stages of work in the design studio academically. Later, we conduct a survey and categorization of the Egyptian schools of architecture, to identify the mechanisms of their CAAD applications. We aim to improve the synergies between academia and professional practice and, in this respect, we hold a comparison between the professional context and the academic context with emphasis on the pedagogical aspects of architecture in design studio. The third part makes proposals to bridge the gap between the professional practices in the applications of CAAD and academic practices via enhancement of architectural technology-based learning milieu. The proposed techniques are applied and examined in the design studio. They aim to establish the parallelism between academic objectives and professional and technological objectives.
series ASCAAD
email
last changed 2017/05/25 13:33

_id acadia16_318
id acadia16_318
authors Huang, Alvin
year 2016
title From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp
doi https://doi.org/10.52842/conf.acadia.2016.318
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 318-325
summary Drawing inspiration from the variable density structures of bones and the self-supported cantilvers of corbelled brick arches, the Durotaxis Chair and the La Burbuja lamp explore a material-based design process by responding to the challenge of designing a 3D print, rather than 3D printing a design. As such, the fabrication method and materiality of 3D printing define the generative design constraints that inform the geometry of each. Both projects are seen as experiments in the design of 3D printed three-dimensional space packing structures that have been designed specifically for the machines by which they are manufactured. The geometry of each project has been carefully calibrated to capitalize on a selection of specific design opportunities enabled by the capabilities and constraints of additive manufacturing. The Durotaxis Chair is a half-scale prototype of a fully 3D printed multi-material rocking chair that is defined by a densely packed, variable density three-dimensional wire mesh that gradates in size, scale, density, color, and rigidity. Inspired by the variable density structure of bones, the design utilizes principal stress analysis, asymptotic stability, and ergonomics to drive the logics of the various gradient conditions. The La Burbuja Lamp is a full scale prototype for a zero-waste fully 3D printed pendant lamp. The geometric articulation of the project is defined by a cellular 3D space packing structure that is constrained to the angles of repose and back-spans required to produce un-supported 3D printing.
keywords parametic design, digital fabrication, structural analysis, additive manufacturing, 3d printing
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id ecaade2016_026
id ecaade2016_026
authors Agkathidis, Asterios
year 2016
title Implementing Biomorphic Design - Design Methods in Undergraduate Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2016.1.291
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 291-298
summary In continuation to Generative Design Methods, this paper investigates the implementation of Biomorphic Design, supported by computational techniques in undergraduate, architectural studio education. After reviewing the main definitions of biomorphism, organicism and biomimicry synoptically, we will assess the application of a modified biomorphic method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of design outputs, student performance as well as moderators and external examiners reports initiate a constructive debate about accomplishments and failures of a design methodology which still remains alien to many undergraduate curricula.
wos WOS:000402063700033
keywords CAAD Education; Strategies, Shape Form and Geometry; Generative Design; Design Concepts
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_013
id caadria2016_013
authors Aschwanden, Gideon D.P.A.
year 2016
title Neighbourhood detection with analytical tools
doi https://doi.org/10.52842/conf.caadria.2016.013
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 13-22
summary The increasing population size of cities makes the urban fabric ever more complex and more disintegrated into smaller areas, called neighbourhoods. This project applies methods from geoscience and software engineering to the process of identification of those neighbourhoods. Neighbourhoods, by nature, are defined by connec- tivity, centrality and similarity. Transport and geospatial datasets are used to detect the characteristics of places. An unsupervised learning algorithm is then applied to sort places according to their characteris- tics and detect areas with similar make up: the neighbourhood. The at- tributes can be static like land use or space syntax attributes as well as dynamic like transportation patterns over the course of a day. An un- supervised learning algorithm called Self Organizing Map is applied to project this high dimensional space constituting of places and their attributes to a two dimensional space where proximity is similarity and patterns can be detected – the neighbourhoods. To summarize, the proposed approach yields interesting insights into the structure of the urban fabric generated by human movement, interactions and the built environment. The approach represents a quantitative approach to ur- ban analysis. It reveals that the city is not a polychotomy of neigh- bourhoods but that neighbourhoods overlap and don’t have a sharp edge.
keywords Data analytics; urban; learning algorithms; neighbourhood delineation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2016_228
id ecaade2016_228
authors Balaban, Ozgun and Tuncer, Bige
year 2016
title Visualizing Urban Sports Movement
doi https://doi.org/10.52842/conf.ecaade.2016.2.089
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 89-94
summary In this study, a visualization tool that maps outdoor physical activity such as runs on a map by specifying time, location, activity, gender, age group, etc. is created. This tool reveals the usage patterns of streets within a city for outdoor physical activity. This tool is created within a larger research project that investigates the influence of streets on the leisure walking activity within cities. For this purpose, the tool is capable of presenting the collected multi-modal data that includes personal fitness data, weather data, spatial data, and crime data. Moreover, the tool creates new analysis capabilities such as displaying usage of streets by urban joggers. The research project in which this tool will be used is aimed for designers/planners to improve streets for 'runnability'.
wos WOS:000402064400008
keywords Sports Activity; Big Data; Urban Visualization; Fitness Applications
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2023_508
id sigradi2023_508
authors Barber, Gabriela and Lafluf, Marcos
year 2023
title Videomapping laboratory. Systematization of experiences 2016-2022
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 843–854
summary This article synthesizes the result of a systematization and analysis of videomapping carried out in “Laboratorio de Visualización Digital Avanzada” in the period 2014-2022, taking as a source the information collected in the investigation "(Lafluf, 2020), it is updated by integrating new experiences and new interpretations. Likewise, the article aims to provide a structured way to describe and analyze videomapping projects, keeping in mind three axes: context project, mapping project, and mapping event. These categories refer to a strategy developed within the methodological framework of the master's thesis "Videomapping en los proyectos del Laboratorio de Visualización Digital Avanzada de la Facultad de Arquitectura Diseno y Urbanismo (Udelar). Caso de estudio: Videomapping Patrimonio Anglo" (Lafluf, 2020) as well as in other investigations to describe the videomapping. Once this set of videomapping projects has been presented, general considerations are made to analyze the surveyed cases.
keywords New Media Art, video mapping, New Media, Architecture, Projection Mapping
series SIGraDi
email
last changed 2024/03/08 14:07

_id ecaade2016_098
id ecaade2016_098
authors Bia³kowski, Sebastian
year 2016
title Structural Optimisation Methods as a New Toolset for Architects
doi https://doi.org/10.52842/conf.ecaade.2016.2.255
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 255-264
summary The paper focuses on possibilities of already known engineering procedures such as Finite Element Method or Topology Optimisation for effective implementation in architectural design process. The existing attempts of complex engineering algorithms implementation, as a form finding approach will be discussed. The review of architectural approaches utilising engineering methods will be supplemented by the author's own solution for that particular problem. By intersecting architectural form evaluation with engineering analysis complemented by optimisation algorithms, the new quality of contemporary architecture design process may appears.
wos WOS:000402064400025
keywords topology optimization; design support tools; complex geometries; finite element method; CUDA
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_022
id ascaad2016_022
authors Birge, David; Sneha Mandhan and Alan Berger
year 2016
title Dynamic Simulation of Neighborhood Water Use - A case study of Emirati neighborhoods in Abu Dhabi, UAE
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 197-206
summary Being located in a hot, humid and arid bioregion, as well as having a unique religious and social context, the Gulf Cooperation Council cities pose significant challenges to the achievement of sustainable urban development. Using native neighborhoods in Abu Dhabi as a case study, this ongoing research aims to develop a design methodology which utilizes both qualitative and quantitative analysis towards the holistic, feedback driven design of new neighborhood typologies for the native population. This paper focuses on the methodology and application of a water use module which measures neighborhood scale indoor and outdoor water use, an area of simulation critical to developing sustainable neighborhoods for Arab cities, yet underrepresented within the literature. The water module comprises one part of a larger toolkit that aims to measure both environmental sustainability as well as social and cultural factors unique to the context of Abu Dhabi and the gulf region.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia16_106
id acadia16_106
authors Das, Subhajit; Day, Colin; Hauck, John; Haymaker, John; Davis, Diana
year 2016
title Space Plan Generator: Rapid Generationn & Evaluation of Floor Plan Design Options to Inform Decision Making
doi https://doi.org/10.52842/conf.acadia.2016.106
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 106-115
summary Design exploration in architectural space planning is often constrained by tight deadlines and a need to apply necessary expertise at the right time. We hypothesize that a system that can computationally generate vast numbers of design options, respect project constraints, and analyze for client goals, can assist the design team and client to make better decisions. This paper explains a research venture built from insights into space planning from senior planners, architects, and experts in the field, coupled with algorithms for evolutionary systems and computational geometry, to develop an automated computational framework that enables rapid generation and analysis of space plan layouts. The system described below automatically generates hundreds of design options from inputs typically provided by an architect, including a site outline and program document with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this workflow can clarify project goals early in the design process, save time, enable better resource allocation, and assist key stakeholders to make informed decisions and deliver better designs. Further, the system is tested on a case study healthcare design project with set goals and objectives.
keywords healthcare spaces, facility layout design, design optimization, decision making, binary data tree structure, generative design, automated space plans
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id caadria2016_611
id caadria2016_611
authors Dritsas, Stylianos
year 2016
title An Advanced Parametric Modelling Library for Architectural and Engineering Design
doi https://doi.org/10.52842/conf.caadria.2016.611
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 611-620
summary This paper presents a design computation system support- ing scientific computing methods relevant to architectural and engi- neering design under the paradigm of visual programming. The objec- tive of this research work is to expand and advance the palette of methods employed in academic and professional design environments. The tools contain methods for linear algebra, non-linear solvers, net- work analysis and algorithms for classical operational research prob- lems such as cutting and packing, clustering and routing. A few dec- ades ago the idea that computing would become so pervasive in the realm of architecture and engineering as it is today was confronted with deep scepticism. The thesis of this paper is that while it may be equally implausible that such methods are relevant today it may be the next natural evolution in the direction of design computation. The cur- rent state of the presented software package is still in early alpha ver- sion and it is available online for evaluation.
keywords Design computation; parametric modelling; visual programming
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2016_056
id ascaad2016_056
authors Dutt, Florina; Subhajit Das
year 2016
title Geospatial Tool Evaluating Job Location Mismatch, Based on Available Workforce and Transit Options - Evaluating property location in a city using large-scale datasets
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 557-566
summary The paper addresses the issue of spatial mismatch of jobs and the accessibility to job locations based on different age, income and industry group. Taking Atlanta as a case study, we developed a geospatial analysis tool enabling developers, the city planning bureau and the residents to identify potential sites of redevelopment with better economic development opportunities. It also aids to find potential location to live with respect to user’s choices for transit options, walkability, job location and proximity to chosen land use. We built our model on a block level in the city, imparting them a score, visualizing the data as a heat map. The metrics to compute the score included proximity to job, proximity to worker’s residence, transit availability, walkability and number of landmark elements near the site. We worked with Longitudinal Employer-Household Dynamics (LEHD) Data along with residence area characteristics (RAC) and work place area characteristic (WAC) data sets, where the total number of data-points was over 3 million. It was challenging for us to optimize computation such that the prototype performs statistical analysis and updates visualization in real time. The research further is prototyped as a web application leveraging Leaflet’s Open Street Maps API and D3 visualization plugin. The research showed that there is a high degree of spatial mismatch between home and job locations with very few jobs with driving distance within 5 -10 miles with limited transit options in Atlanta. Further, it showed that low-earning workers need to travel significantly larger distance for work compared to higher class.
series ASCAAD
email
last changed 2017/05/25 13:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_436721 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002