CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 614

_id ecaade2016_216
id ecaade2016_216
authors Zarzycki, Andrzej
year 2016
title Adaptive Designs with Distributed Intelligent Systems - Building Design Applications
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 681-690
doi https://doi.org/10.52842/conf.ecaade.2016.1.681
wos WOS:000402063700073
summary This paper discusses and demonstrates an integration of embedded electronic systems utilizing distributed sensors and localized actuators to increase the adaptability and environmental performance of a building envelope. It reviews state-of-the-art technologies utilized in other fields that could be adopted into smart building designs. The case studies discussed here, sensors are embedded in construction assemblies provide a greater resolution of gathered data with a finer degree of actuation. These case studies adopt the Internet of Things (IoT) framework based on machine-to-machine (M2M) communication protocols as a potential solution for embedded building systems. stract here by clicking this paragraph.
keywords Adaptable Designs; Arduino Microcontrollers; ESP8266; Smart Buildings; Internet of Things
series eCAADe
email
last changed 2022/06/07 07:57

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2016_621
id caadria2016_621
authors Lee, Ji Ho and Ji-Hyun Lee
year 2016
title Cultural Difference in Colour Usages for Building Exteriors Focusing on Theme Park Buildings
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 621-630
doi https://doi.org/10.52842/conf.caadria.2016.621
summary The notion of globalisation has become widely spread in various fields, and accordingly, it is increasingly more important to take account of indigenous culture characteristics in each field. An as- pect of achieving globalisation, globalization with local consideration, is to consider the difference of colour usage between distinct cultures. This study suggests an approach to investigate the colour difference between eastern and western cultures with the case analysis of build- ing fac?ade colours in Disneyland Paris and Tokyo Disneyland. We an- alysed cultural colour usage characteristics and derived tendencies for both Paris and Tokyo Disneyland building fac?ade colours. To do this, we use image based k-means clustering algorithm and CIELAB colour space distances to explore colour characteristics. Our analysis indi- cates an overall colour usage tendency that Paris uses more green and bluish colours and Tokyo uses more red and yellowish colours for building fac?ades, based on CIELAB colour space values. The major motivation of this paper was to reflect the atmosphere and the mood of the space that can be easily felt but not readily expressible into a cultural colour palette. Eventually, by finding the characteristics of perceived colours, we hope to create a colour recommendation system for different cultures based on cultural clues.
keywords Culture; colour usage; colour clustering; building fac?ade; computational approach
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id ascaad2016_003
id ascaad2016_003
authors Al-Jokhadar, Amer; Wassim Jabi
year 2016
title Humanising the Computational Design Process - Integrating Parametric Models with Qualitative Dimensions
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 9-18
summary Parametric design is a computational-based approach used for understanding the logic and the language embedded in the design process algorithmically and mathematically. Currently, the main focus of computational models, such as shape grammar and space syntax, is primarily limited to formal and spatial requirements of the design problem. Yet, qualitative factors, such as social, cultural and contextual aspects, are also important dimensions in solving architectural design problems. In this paper, an overview of the advantages and implications of the current methods is presented. It also puts forward a ‘structured analytical system’ that combines the formal and geometric properties of the design, with descriptions that reflect the spatial, social and environmental patterns. This syntactic-discursive model is applied for encoding vernacular courtyard houses in the hot-arid regions of the Middle East and North Africa, and utilising the potentials of these cases in reflecting the lifestyle and the cultural values of the society, such as privacy, human-spatial behaviour, the social life inside the house, the hierarchy of spaces, the segregation and seclusion of family members from visitors and the orientation of spaces. The output of this analytical phase prepares the groundwork for the development of socio-spatial grammar for contemporary tall residential buildings that gives the designer the ability to reveal logical spatial topologies based on socio-environmental restrictions, and to produce alternatives that have an identity while also respecting the context, place and needs of users.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
wos WOS:000402064400063
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2016_615
id sigradi2016_615
authors Almeida , Rafael Goffinet de; Santos, Fábio Lopes Souza
year 2016
title Um olhar sobre a relação entre sujeitos e meios técnicos: O público como construção social mediada [Looking at the relationship between subjects and technical means: The audience as mediated social construction]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.872-879
summary This article analyses some of the proposals produced in the late 1970´s by the American contemporary artist Dan Graham, in which he uses technical means to investigate the audience´s perception and behavior. The questions raised highlight reciprocity phenomena and identity constructions – factors that affect our experience and behavior in contemporary cities daily life. All of these issues derive from Graham´s investigations of the main information and communication technologies (media) produced at that time, and which continue to offer reflections on current relationship between technical means and the subject – that is, his/her condition as audience, observer, spectator or user.
keywords Dan Graham; Contemporary art; Contemporary Architecture and City; Technical means; Contemporary spatiality
series other
type normal paper
email
last changed 2017/06/21 14:49

_id ecaade2016_058
id ecaade2016_058
authors Aschwanden, Gideon
year 2016
title Big Data for Urban Design - The impact of centrality measures on business success
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 457-462
doi https://doi.org/10.52842/conf.ecaade.2016.2.457
wos WOS:000402064400045
summary This paper investigates the role of spatial parameters in relation to the economic dynamic embedded in the urban fabric. The key element explored in this study is the role of the urban configuration and accessibility on the success of different business sectors in Switzerland.The underlying hypothesis is that economic markets are constant forces of change influencing the development of cities and functions on all scales. Markets are institutions that reduce people's choices based on a myriad of factors to a single number, the price. Accessibility is a resource for each business that yields multiple values of benefits and transactions in terms of economic properties. This project explores the interaction of multiple measures of accessibility, calculated by Space Syntax analysis, with the success of different markets represented by employment by business sector. 828548 business locations and 44 spatial measures were used to derive associations between them. The results show that the measure of 'Choice' correlates highly for smaller radii and 'Integration' for larger radii with the total number of jobs. The result also shows each sector has a specific set of accessibility measures that allows them to thrive.
keywords Big Data; Centrality; Economy; Accessibility; Urban Design
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_343
id caadria2016_343
authors Asriana, Nova and Aswin Indraprastha
year 2016
title Making Sense of Agent-based Simulation: Developing Design Strategy for Pedestrian-centric Urban Space
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 343-352
doi https://doi.org/10.52842/conf.caadria.2016.343
summary This study investigates the relationships of field observa- tion, multi-agent simulation and space-syntax theory in spatial config- uration for developing design strategy for a case study, a tourist hub area in Musi Riverside, Palembang. Having such potential advantage and to tackle existing social and urban issues, our study developed a design approach based on multi-agent simulation enhanced by space syntax theory. The goal of this study is a deep understanding of multi agent simulation through mechanism of validation using field obser- vation and by taking into account the existing urban features. The purpose is to develop design strategy of pedestrian-centric urban space to be functioned as a tourist hub based on computational modelling. Following the paths result of pedestrian flow by multi-agents simula- tion, we elaborated the analysis of facility programming by means of Space Syntax theory. It shows the ranking of facility programs based on their relative connectivity and integration. By merging this result, it assembles programs and their circulation spaces by means of compu- tational simulation. Experimenting in both fields show a novel ap- proach for pedestrian-centric design in urban scale, particularly since behavioural models rarely used in early stage of design process. It shows that multi-agent simulation should be coupled with field obser- vation.
keywords Multi-agents simulation; network analysis; Space Syntax theory; design strategy; urban space
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2016_815
id sigradi2016_815
authors Bernal, Marcelo
year 2016
title From Parametric to Meta Modeling in Design
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.579-583
summary This study introduces the Meta-Modeling process adopted from the Model Based System Engineering field (MBSE) to explore an approach for the generation of design alternatives beyond the restrictions of the Parametric Models that mainly produce geometric variations and have limitations in terms of topological transformations during the exploratory design tasks. The Meta-Model is the model of attributes and relationships among objects of a particular domain. It describes objects and concepts in abstract terms independent from the complexity of the geometric models and provides mapping mechanisms that facilitate the interfacing with parametric parts. The flexibility of these computer-interpretable and human-readable models can contribute to creatively manipulate the design knowledge embedded in parametric models.
keywords Parametric Modeling; Meta-Modeling; Model Based System Engineering; Modeling Languages; Systems Integration
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_649
id sigradi2016_649
authors Bessone, Miriam; Imbach, Graciela; Costa, Matías Dalla; Fritz, Soledad
year 2016
title Investigación Didáctica colectiva: Caso Taller de Proyecto Arquitectónico 1- Matemática [Didactics - Collective Research: Architectural Project Workshop 1– Mathematics (Case study)]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.211-218
summary The integration of ICT in education enables the development of didactic strategies related to the subjectivities of the present. Specifically, the integration of the parametric modelling implies the organization of complex strategies and the exchange of collaborative work among teachers from different disciplines, ages, viewpoints, and assessment criteria. This exchange encourages a multidirectional dialogue among subjects, knowledge, areas and media. And thus the integration of ICT and the multidirectional dialogue provide the opportunity to bring together contents which seemed to be blocked up until now. It is within this cultural field where the digital technologyconnects the mathematics with the architectural project, redefining the historical link between both.
keywords Collective Research; Teachin; Mathematics; Parametric modelling; Architectural project
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_151
id ecaade2016_151
authors Blonder, Arielle and Grobman, Yasha Jacob
year 2016
title Natural Complexity - Embedded Fabric Materiality in Fibre-Reinforced Polymer Fabrication
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 581-589
doi https://doi.org/10.52842/conf.ecaade.2016.1.581
wos WOS:000402063700063
summary Fibre composites are synthetic in their composition, but structured similarly to biological materials, as fibre and matrix. While the fibre constituent in Fibre-Reinforced Polymer (FRP) is mostly used under the form of fabrics, its standard fabrication processes do not rely on its inherent textile attributes. Embedding the fabric qualities in the fabrication of architectural FRP can potentially introduce concepts and properties of biological materials into engineered fibre composites; it can promote and enable the generation of an architectural complexity of a biological nature. The paper presents Fabric Materiality as a framework for a new design and fabrication process and demonstrates through a case study its integration in the fabrication of architectural FRP elements to achieve a complex structure with bio-inspired properties.
keywords Textile; Materiality; Self-organisation; Resilience; Composites; FRP
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2016_724
id sigradi2016_724
authors Bomfim, Carlos Alberto Andrade; Lisboa, Bruno Teixeira Wildberger; Matos, Pedro Cesar Correia de
year 2016
title Gest?o de Obras com BIM – Uma nova era para o setor da Construç?o Civil [Construction Management with BIM – A new era for the Construction sector]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.556-560
summary The update in the design process associated with a constant search for efficient construction methods, budgets and actual schedules, passes through common terms the planning engineering and constructability, rationalization and integration. This article is based on literature review on the topic and interview with the experience of BIM core of a company in Brazil. BIM involves more than just 3D modeling and is also commonly defined into more dimensions, such as 4D (time), 5D (cost), 6D (the built - operation) and 7D (sustainability). The use of BIM can now be considered a reality that will promote changes to Construction.
keywords Project Management; Construction Management; Digital Modeling; Design Process; Simulation
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_637
id sigradi2016_637
authors Castro Arenas, Cristhian; Miralles, Monica
year 2016
title Naturaleza, Sinergia, Tensegridad y Biotensegridad, ?es 1 + 1 = 4? [Nature, Sinergy, Tensegrity and Biotensegrity, ?is 1 + 1 = 4?]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.118-122
summary The optimization of resources in nature has stimulated the creation of strategies to facilitate the interchange of energy, matter and information. Observation of these natural phenomena allowed Fuller to develop the concept of Tensegrity Systems in the 50's, generating a growing integration of multidisciplinary views on this subject. In this paper Tensegrity is postulated, given its peculiar synergistic qualities, as a paradigmatic and emergent concept in the projectual disciplines, both as a type of system displaying reciprocal interactions between a given number of nodes, and as a structural system with potential applications in multiple, evolving, scientific-technological fields.
keywords Sinergy; Tensegrity; Biotensegrity; Fuller; Systems
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_259
id caadria2016_259
authors Chen, Jia-Yih and Shao-Chu Huang
year 2016
title Adaptive Building Facade Optimisation: An integrated Green-BIM approach
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 259-268
doi https://doi.org/10.52842/conf.caadria.2016.259
summary This study focused on the optimal design of adaptive build- ing fac?ade for achieving better energy performance. Iterative fac?ade components design are studied between virtual and physical models with integrated tools of BIM, parametric design and sensor devices. The main objectives of this study are: (1) exploring systematic design process via the analysis of adaptive components in responsive fac?ade design; (2) developing compliance checking system for green building regulations; (3) developing optimization system for adaptive fac?ade design process. This paper demonstrated the integration of various digital design methods and concluded with the energy modelling re- sults of a demo project unit for various fac?ade component designs.
keywords Building fac?ade design; energy performance; design optimization; parametric design; BIM
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia16_440
id acadia16_440
authors Clifford, Brandon
year 2016
title The McKnelly Megalith: A Method of Organic Modeling Feedback
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 440-449
doi https://doi.org/10.52842/conf.acadia.2016.440
summary Megalithic civilizations held tremendous knowledge surrounding the deceivingly simple task of moving heavy objects. Much of this knowledge has been lost to us from the past. This paper mines, extracts, and experiments with this knowledge to test what applications and resonance it holds with contemporary digital practice. As an experiment, a sixteen-foot tall megalith is designed, computed, and constructed to walk horizontally and stand vertically with little effort. Testing this prototype raises many questions about the relationship between form and physics. In addition, it projects practical application of such reciprocity between architectural desires and the computation of an object’s center of mass. This research contributes to ongoing efforts around the integration of physics-based solvers into the design process. It goes beyond the assumption of statics as a solution in order to ask questions about what potentials mass can contribute to the assembly and erecting of architectures to come. It engages a megalithic way of thinking which requires an intimate relationship between designer and center of mass. In doing so, it questions conventional disciplinary notions of stasis and efficiency.
keywords rapid prototyping, design simulation, fabrication, computation, megalith
series ACADIA
type normal paper
email
more admin
last changed 2022/06/07 07:56

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ascaad2016_045
id ascaad2016_045
authors Dahadreh, Saleem; Rasha Alshami
year 2016
title The Four F's of Architecture - A conceptual framework for understanding architectural works
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 439-450
summary This paper presents a conceptual framework for understanding architectural works. This framework provides an understanding of an architectural building through qualitatively discerning the complexity of issues involved in its design and enabling their systematic integration into a theoretical construct. The premise behind this framework is that in design a better understanding of ‘what’ to design leads to a more informed base to ‘how’ to design. Using a grounded theory method, the paper postulates an ontological framework that recasts the Vitruvian triad of utilitas, venustas, and firmitas into spatial, intellectual, and structural forms respectively, and more importantly expands the triad to include context and architectural thinking as formative ideas, as integral components in any architectural work, thus closing a gap that existed in many frameworks dealing with architecture. The paper concluded that this framework offers a level of robust understanding of architecture that can be used in structuring the generation of architectural form as well as the description and analysis of existing works of architecture. Its value exceeds theory framing and extends towards architectural pedagogy as a theoretical framework in teaching design studio.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2016_078
id ecaade2016_078
authors Das, Subhajit, Zolfagharian, Samaneh, Nourbakhsh, Mehdi and Haymaker, John
year 2016
title Integrated Spatial-Structural Optimization in the Conceptual Design Stage of Project - A tool to generate and optimize design solutions aiding informed decision making for Architects, Engineers and Stakeholders
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 117-126
doi https://doi.org/10.52842/conf.ecaade.2016.2.117
wos WOS:000402064400011
summary Healthcare design projects require the careful integration of spatial and structural requirements. Today, design teams typically resolve these requirements in two separate, largely sequential steps. In the first step, architects leverage their experience and vision to develop space plans that address program and goals. Next, based on the architect's recommended design, engineers generate and refine a structural design to address structural requirements. This manual process produces a very limited number of non optimal spatial and structural design solutions with unclear decision rationale. This paper presents the Integrated Spatial-Structural Optimization (ISSO) decision making methodology. ISSO supports design teams by helping them generate, analyze, and manage a vast number of integrated spatial and structural solutions. ISSO features a bi-level optimization workflow that has been customized for spatial and structural design of healthcare facilities. The paper describes implementation in the Dynamo parametric modeling platform, and retrospective validation of the algorithm and workflow on an industry case study to demonstrate how ISSO can help design teams generate, analyze, and manage more conceptual design options.
keywords Spatial Design; Generative Design; Design Optimization; Facility Planning; Design Tools; Design Automation
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_1481 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002