CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id acadia16_72
id acadia16_72
authors Harrison, Paul
year 2016
title What Bricks Want: Machine Learning and Iterative Ruin
doi https://doi.org/10.52842/conf.acadia.2016.072
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 72-77
summary Ruin has a bad name. Despite the obvious complications, failure provides a rich opportunity—how better to understand a building’s physicality than to watch it collapse? This paper offers a novel method to exploit failure through physical simulation and iterative machine learning. Using technology traditionally relegated to special effects, we can now understand collapse on a granular level: since modern-day physics engines track object-object collisions, they enable a close reading of the spatial preferences that underpin ruin. In the case of bricks, that preference is relatively simple—to fall. By idealizing bricks as rigid bodies, one can understand the effects of gravitational force on each individual brick in a masonry structure. These structures are sometimes able to ‘settle,’ resulting in a stable equilibrium state; in many cases, it means that they will simply collapse. Analyzing ruin in this way is informative, to be sure, but it proves most useful when applied in series. The evolutionary solver described in this paper closely monitors the performance of constituent bricks and ensures that the most successful structures are emulated by later generations. The tool consists of two parts: a user interface for design and the solver itself. Once the architect produces a potential design, the solver performs an evolutionary optimization; after a few hundred iterations, the end result is a structurally sound version of the unstable original. It is hoped that this hybrid of top-down and bottom-up design strategies offers an architecture that is ultimately strengthened by its contingencies.
keywords rigid body analysis, machine learning, multi-agent structural optimization, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id sigradi2016_583
id sigradi2016_583
authors Chiarella, Mauro; Martini, Sebastián; Giraldi, Sebastián; Góngora, Nicolás; Picco, Camila
year 2016
title Cultura Maker. Dispositivos, Prótesis Robóticas y Programación Visual en Arquitectura y Dise?o para eficiencia energética [Culture Maker. Devices, Prostheses Robotics and Visual Programming in Architecture and Design for energy efficiency.]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.961-968
summary The Maker movement is the ability to be small and at the same time world; craftsmanship and innovative; high technology and low cost. The Maker movement is doing for physical products what the open source made by the software. The Maker culture emphasizes collaborative learning and distributed cognition. Its knowledge base repository and channels of exchange of ideas and information are: web sites; social networks; the Hackerspaces and Fab-Labs. Three experiences presented with devices; prostheses robotics and CNC machines, based on logical replacement; adaptation and generation. Its authors are undergraduate and graduate fellows Industrial Design and Architecture.
keywords Maker culture; Prostheses Robotics; Visual Programming; Energy Efficiency; Adaptive Skin
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id architectural_intelligence2023_11
id architectural_intelligence2023_11
authors Hua Chai & Philip F. Yuan
year 2023
title Hybrid intelligence
doi https://doi.org/https://doi.org/10.1007/s44223-023-00029-w
source Architectural Intelligence Journal
summary Alongside shifts in the technological landscape, the origin of creativity in architectural design has been consistently evolving. According to French philosopher Bernard Stiegler, the architectural design process is never individualistic but rather shaped by the complex interaction between human creativity and what he terms the “pre-individual milieu”, the synthesis of various factors such as cultural heritage, technological innovation (Stiegler, 2016). Over the last three decades, the emergence of digital technologies such as the Internet of Things, virtual reality, and artificial intelligence has significantly enhanced the dynamism and diversity of human–machine communication. With the advancement of digital technologies in the field of architecture, artificial intelligence, machine intelligence, and material intelligence are increasingly integrated into the creative process. In the form of hybrid intelligence, this shift expands the scope of architectural creativity and creative agency beyond the mere intelligent landscape of the human mind. As suggested by architectural theorist Antoine Picon, “another possibility is to consider the pairing of man and machine as a new composite subject……This proposition is suggested by various contemporary reflections on computer technologies and their anthropological dimension” (Picon, 2011).
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id caadria2016_063
id caadria2016_063
authors Kawiti, Derek; Marc Aurel Schnabel and James Durcan
year 2016
title Indigenous Parametricism - Material Computation.
doi https://doi.org/10.52842/conf.caadria.2016.063
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 63-72
summary The use of computational formats and digital tools includ- ing machine fabrication by indigenous people worldwide to augment traditional practices and material culture is becoming more and more commonplace. However within the practice of architecture while there are indigenous architectural practitioners utilizing digital tools, it is unclear as to whether there is motivation to implement traditional in- digenous knowledge in conjunction with these computational instru- ments and methodologies. This paper explores how the tools might be used to investigate the potential for indigenous development, cultural empowerment and innovation. It also describes a general methodology whereby capacity can be shared between academia and indigenous groups to foster new knowledge through a recently implemented in- digenous focused design research entity, SITUA. The importance and significant research potential of what we term 'domain based research' is reinforced through the exploration of emergent materials and build- ing systems located within specific tribal domains. A recent project employing 3D clay extrusion printing is used to illustrate this ap- proach.
keywords Indigenous domain based research: Maori; materials; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.382
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id ascaad2016_051
id ascaad2016_051
authors Papadimitriou, Aikaterini
year 2016
title Self-Healing” Processes for the Cityscape - Computationally driven collective initiatives
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 505-512
summary The subject of this paper describes a proposal on processes and strategies that a community should inherit towards a collective effort for the improvement of public space, in order to evaluate, preserve or cancel actions towards this scope of their personal, and extended, scenery. This project, within the spectrum of what an era, underlined by (financial) crisis, represents, is an experiment on the active cooperation of the citizens for their own benefit. That affects, amongst others, the social and public management of space, by creating and activating a community’s feeling of “ownership and responsibility” within its neighborhood. It is expected to achieve an intense caring environment both for the public space, and the extended private scenery. Identifying the tools for actions as such, there comes the necessity for them to be able to make the interested parties feel comfortable with the main artifact and challenge them for collaboration. The digital era, the social media power, as well as the need of the individuals towards networking and belonging, shall perform the main attraction to the subject, leading to the creation of a digital tool linking the people actively to the changes they want to see. This paper debates on the development of an application that enables citizens to take part on the well-being of the(ir) public space.
series ASCAAD
email
last changed 2017/05/25 13:34

_id acadia16_244
id acadia16_244
authors Ramirez-Figueroa, Carolina; Hernan, Luis; Guyet, Aurelie; Dade-Robertson, Martyn
year 2016
title Bacterial Hygromorphs: Experiments into the Integration of Soft Technologies into Building Skins
doi https://doi.org/10.52842/conf.acadia.2016.244
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 244-253
summary The last few years have seen an increase in the interest to bring living systems into the process of design. Work with living systems, nonetheless, presents several challenges. Aspects such as access to specialists’ labs, samples of living systems, and knowledge to conduct experiments in controlled settings become barriers which prevent designers from developing a direct, material engagement with the material. In this paper, we propose a design methodology which combines development of experiments in laboratory settings with the use of what we call material proxies, which refer to materials that operate in analogue to some of the behaviors observed in the target organism. We will propose that combining material proxies with basic scientific experimentation constitutes a form of direct material engagement, which encourages richer exploration of the design domain. We will develop this argument by reporting on our experience in designing and delivering the primer component of a themed design studio, structured around bacterial spores as hygroscopic components of building facades. The six-week design project asked students to consider the behavior of bacterial spores, and to imagine a number of systems in which they could be employed as actuators of a membrane system that responded to fluctuations in humidity. The module is interesting in that it negotiates some of the challenges often faced by designers who want to develop a material engagement with living systems, and to produce informed speculations about their potential in architectural design.
keywords actuators, architecture, building skins, artifical muscles, hygromorphs, bacterial spores
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id sigradi2016_647
id sigradi2016_647
authors Reginato, Bruna Rovere; Pereira, Alice Theresinha Cybis
year 2016
title Definiç?o do plano de escopo do projeto TEAR_AD - Tecnologia no Ensino e Aprendizagem em Rede nas a?rea de Arquitetura e Design [Scope plan definition of TEAR_AD project – Technology in Teaching and Learning Network in Architecture and Design Area]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.802-807
summary This paper aims to present the construction of the scope plan of TEAR_AD and presents structured through four main topics: (1) the introduction, which is the contextualization of TEAR_AD project and shows what was built until now, (2) methodology, the presentation of Garret's (2011) methodology for scope construction together with techniques based on agile development and Scrum; (3) results, showing the objects constructed from the presented methodology and (4) discussion about the difficulties encountered in the process, strengths and the next steps for the project.
keywords User centered design, interface design, design method, scrum
series SIGRADI
email
last changed 2021/03/28 19:59

_id sigradi2016_510
id sigradi2016_510
authors Tapia, Clara
year 2016
title Análisis comparativo de prendas y estructuras textiles realizadas por impresión 3D [Comparative analysis of the structures of 3D printed clothes and textiles]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.331-336
summary This work is an analysis about contemporary 3D printed textiles and clothes. The goal is to facilitate the work of those who want to design clothes by giving them an organized and categorized map of this new features. The categorization it is done by typologies focused into identify the minimum unit of the structures and the way that they grow to build the surfaces. As a conclusion this papers includes a discussion about what is digital fabrication good for, and the possibilities of personalized production.
keywords 3D Printing; Textiles Structures; Fashion; Parametric Design; Personalized Fabrication
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_015
id ecaade2016_015
authors Nováková, Kateøina and Achten, Henri
year 2016
title From Interactivity Towards Ambience Through a Bottle-brick
doi https://doi.org/10.52842/conf.ecaade.2016.1.613
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 613-619
summary According to the dictionary ambient architecture should be kind of object or space that relies to its surrounding or spontaneously reacts on the presence of human. Ambient architecture can also be musically expressed [1] or painted [2]. We developed special architectural building units that offer space for incorporation of intelligence and media for human interaction and for ambience.We are introducing an object called PET(ch)air made of PET(b)rick [3], a hollow transparent bottle-brick. The first intention was to generate new building unit from recycled PET material. Now that we observe its qualities, we can see it is well prepared for ambient intelligence application, especially in combination with light. For the purpose of a brick we are transforming old recycled plastic into new bottle-bricks. Using the bottle-brick as building unit we build interior objects that are ready to turn spaces into ambient rooms, places that can be customized by their visitors or spontaneously react on them. Together with this, we opened a design studio, where students were asked to develop ambient interior pieces for a special event using the method of learning by doing.
wos WOS:000402063700066
keywords Interactivity; ambient architecture; waste reuse ; bottle-brick; PET(b)rick; PET(ch)air
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
doi https://doi.org/10.52842/conf.acadia.2016.362
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_079
id ecaade2016_079
authors Cheng, Chi-Li and Hou, June-Hao
year 2016
title Biomimetic Robotic Construction Process - An approach for adapting mass irregular-shaped natural materials
doi https://doi.org/10.52842/conf.ecaade.2016.1.133
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 133-142
summary Beaver dams are formed by two main processes. One is that beavers select proper woods for constructing. The other one is that streams aggregate those woods to be assembled. Using this approach to construction structure is suitable for natural environment. In this paper, we attempt to develop a construction process which is suitable for all-terrain construction robot in the future. This construction process is inspired by beavers' construction behavior in nature. Beavers select proper sticks to make the structure stable. We predict that particular properties of sticks contribute gravity-driven assembly of wood structure. Thus, we implement the system with machine learning to find proper properties of sticks to improve selection mechanism of construction process. During this construction process, 3D scanner on robotic arm scans and recognizes sticks on terrain, and then robot will select proper sticks and place them. After placement, the system will scan and record the results for learning mechanism.
wos WOS:000402063700015
keywords Biomimetic Design; Machine Learning; Natural Material; Point Cloud Analysis; Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_116
id acadia16_116
authors Davis, Daniel
year 2016
title Evaluating Buildings with Computation and Machine Learning
doi https://doi.org/10.52842/conf.acadia.2016.116
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 116-123
summary Although computers have significantly impacted the way we design buildings, they have yet to meaningfully impact the way we evaluate buildings. In this paper we detail two case studies where computation and machine learning were used to analyze data produced by building inhabitants. We find that a building’s ‘data exhaust’ provides a rich source of information for longitudinally analyzing people’s architectural preferences. We argue that computation-driven evaluation could supplement traditional post occupancy evaluations.
keywords spatial analytics, machine learning, post occupancy evaluation
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id caadria2024_186
id caadria2024_186
authors Huang, Jingfei and Tu, Han
year 2024
title Inconsistent Affective Reaction: Sentiment of Perception and Opinion in Urban Environments
doi https://doi.org/10.52842/conf.caadria.2024.2.395
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 395–404
summary The ascension of social media platforms has transformed our understanding of urban environments, giving rise to nuanced variations in sentiment reaction embedded within human perception and opinion, and challenging existing multidimensional sentiment analysis approaches in urban studies. This study presents novel methodologies for identifying and elucidating sentiment inconsistency, constructing a dataset encompassing 140,750 Baidu and Tencent Street view images to measure perceptions, and 984,024 Weibo social media text posts to measure opinions. A reaction index is developed, integrating object detection and natural language processing techniques to classify sentiment in Beijing Second Ring for 2016 and 2022. Classified sentiment reaction is analysed and visualized using regression analysis, image segmentation, and word frequency based on land-use distribution to discern underlying factors. The perception affective reaction trend map reveals a shift toward more evenly distributed positive sentiment, while the opinion affective reaction trend map shows more extreme changes. Our mismatch map indicates significant disparities between the sentiments of human perception and opinion of urban areas over the years. Changes in sentiment reactions have significant relationships with elements such as dense buildings and pedestrian presence. Our inconsistent maps present perception and opinion sentiments before and after the pandemic and offer potential explanations and directions for environmental management, in formulating strategies for urban renewal.
keywords Urban Sentiment, Affective Reaction, Social Media, Machine Learning, Urban Data, Image Segmentation.
series CAADRIA
email
last changed 2024/11/17 22:05

_id ecaade2016_023
id ecaade2016_023
authors Olascoaga, Carlos Sandoval, Xu, Wenfei and Flores, Hector
year 2016
title Crowd-Sourced Neighborhoods - User-Contextualized Neighborhood Ranking
doi https://doi.org/10.52842/conf.ecaade.2016.2.019
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 19-30
summary Finding an attractive or best-fit neighborhood for a new resident of any city is not only important from the perspective of the resident him or herself, but has larger implications for developers and city planners. The environment or mood of the right neighborhood is not simply created through traditional characteristics such as income, crime, or zoning regulations - more ephemeral traits related to user-perception also have significant weight. Using datasets and tools previously unassociated with real-estate decision-making and neighborhood planning, such as social media and machine learning, we create a non-deterministic and customized way of discovering and understanding neighborhoods. Our project creates a customizable ranking system for the 195 neighborhoods in New York City that helps users find the one that best matches their preferences. Our team has developed a composite weighted score with urban spatial data and social media data to rank all NYC neighborhoods based on a series of questions asked to the user. The project's contribution is to provide a scientific and calibrated understanding of the impact that socially oriented activities and preferences have towards the uses of space.
wos WOS:000402064400001
keywords Textual Semantic analysis; machine learning; participatory planning; community detection; neighborhood definition
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_281
id caadria2016_281
authors Pinochet, Diego
year 2016
title Making - Gestures: Continuous design through real time Human Machine interaction
doi https://doi.org/10.52842/conf.caadria.2016.281
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 281-290
summary Design is “something that we do” that is related to our unique human condition as creative individuals, so as “making” is related to how we manifest and impress that uniqueness into our surrounding environment. As designers, the way we impress our ideas into the material world is tightly connected to a ‘continuous creative performance’ and with concepts often missing in digital design and fabrication techniques –yet present in analog processes - such as ambiguity, improvisation and imprecision. In this paper, a model of human-machine interaction is proposed, that seeks to transcend the ‘hylomorphic’ model imperative in today’s digital architectural design practice to a more performative and reciprocal form of computational making. By using body gestures and imbuing fabrication machines with behaviour, the research seeks to embrace the concept of ‘performance and error’ as promoters of creativity and cognition about the things we create, installing human as the bond of the interrelations between designing and making.
keywords Human machine interaction; computational making; machine learning; digital design and fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac201614103
id ijac201614103
authors Savov, Anton; Oliver Tessmann and Stig Anton Nielsen
year 2016
title Sensitive Assembly: Gamifying the design and assembly of fac?ade wall prototypes
source International Journal of Architectural Computing vol. 14 - no. 1, 30-48
summary The article describes a method for gamifying the design and assembly of computationally integrated structures built out of discrete identical blocks. As a case study, the interactive installation Sensitive Assembly was designed and built at the Digital Design Unit (Prof. Dr Oliver Tessmann) at the Technische Universita?t of Darmstadt and exhibited during the digital art festival NODE 2015 in Frankfurt in 2015. Sensitive Assembly invites people to play a Jenga-like game: starting from a solid wall, players are asked to remove and replace the installation’s building blocks to create windows to a nurturing light while challenging its stability. A computational system that senses the current state of the wall guides the physical interaction and predicts an approaching collapse or a new light beam breaking through. The installation extends the notion of real-time feedback from the digital into the physical and uses machine-learning techniques to predict future structural behaviour.
keywords Gamification, prediction, feedback, interaction, assembly
series journal
last changed 2016/06/13 08:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_864809 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002