CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_198
id ecaade2017_198
authors Hussein, Hussein, Agkathidis, Asterios and Kronenburg, Robert
year 2017
title Free-form Transformation Of Spatial Bar Structures - Developing a design framework for kinetic surfaces geometries by utilising parametric tools
doi https://doi.org/10.52842/conf.ecaade.2017.1.747
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 747-756
summary This paper presents a design framework for free-form transformation of kinetic, spatial bar structures using computational design techniques. Spatial bar structures considered as deployable, transformable kinetic structures composed of straight, linear members, assembled in a three-dimensional configuration. They are often utilised in portable, mobile or transformable buildings. Transformable systems of spatial bar structures are mostly based on modification of primitive shapes (e.g. box, sphere, and cylinder). Each system is subdivided into multiple members having the same shape, the so-called kinetic blocks. Some diverse precedents made to develop other forms of transformation of these structures with some issues. This research project will investigate how a free-form transformation of spatial bar systems can be achieved, by redesigning the kinetic block in relation to architectural, technical parameters. In order to develop a physical prototype of the kinetic block, and assess its potential in enabling free-form transformation of a spatial bar system, a design framework incorporating parametric, algorithmic and kinetic design strategies is required. The proposed design workflow consists of three main phases: form-finding, stability validation and actuation.
keywords Parametric design; Kinetic; transformable; deployable; Free-form; design strategy
series eCAADe
email
last changed 2022/06/07 07:50

No more hits.

HOMELOGIN (you are user _anon_813958 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002