CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 17 of 17

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2017_051
id sigradi2017_051
authors Quitral Zapata, Francisco Javier; Luis Felipe González Böhme
year 2017
title Máquina CNC de 7 ejes para cortar poliestireno expandido (EPS) obteniendo superficies de doble curvatura en una sola pasada. [7-axis CNC machine to cut expanded polystyrene (EPS) for obtaining double-curved surfaces in a single pass.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.352-357
summary We present a novel CAD/CAM apparatus and method for single-pass cutting of double-curved expanded polystyrene formworks. A rationalization approach was implemented using generic solvers in a popular free visual programming environment integrated into a well-known commercial CAD software, which allows finding elastica curve sections for processing double-curved NURBS surfaces. This procedure allows us to convert bending curves geometry into G-code coordinates for numerically controlling a flexible cutting hot-blade. A prototype 7-axis machine was experimentally validated in a series of cutting processes of EPS formworks to build a double-curved concrete pony wall.
keywords Hot-blade cutting, Double-curved surfaces, Single-pass cutting, Expanded polystyrene formworks, Computer-aided manufacturing
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2017_005
id caadria2017_005
authors Xia, Tian, Koh, Jing Lin, Chen, Yutong, Goh, Yi Qian and Dritsas, Stylianos
year 2017
title Form-finding with Robotics - Fusing Physical Simulation and Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2017.893
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 893-902
summary We present an experimental digital design and fabrication process investigating the integration of form-finding and industrial robotics. The design process is inspired by classical experiments producing minimal surfaces and tensile structures via physical simulation. The fabrication process resembles thermoforming whereby sheets of PET material are heat treated and while in a malleable state, where the material behaves like stretchable fabric, an industrial articulated robotic arm impresses a form while the sheet is air cooled and its final shape becomes stable and rigid. The three-dimensional plastic sheets are used as molds for glass-reinforced concrete casting. The key aspects of our approach include: (a) Mold-less fabrication: the design of our robotic end-effector can produce a range of free-form geometries without need for complex mold making (b) Reusable and durable artifacts: unlike traditional physical form-finding processes where the derived form is often ephemeral or fragile our process affords the detachment of a rigid artifacts which can be digitized, used as-is or employed in (c) Multi-stage fabrication: as the form-found geometry can be directly used for processes such as casting with excellent results in terms of surface finish. We present the design and development of our system and its deployment for an installation artwork.
keywords Form-Finding; Digital Fabrication; Architectural Robotics
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2017_148
id ecaade2017_148
authors Baseta, Efilena, Sollazzo, Aldo, Civetti, Laura, Velasco, Dolores and Garcia-Amorós, Jaume
year 2017
title Photoreactive wearable: A computer generated garment with embedded material knowledge - A computer generated garment with embedded material knowledge
doi https://doi.org/10.52842/conf.ecaade.2017.2.317
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 317-326
summary Driven by technology, this multidisciplinary research focuses on the implementation of a photomechanical material into a reactive wearable that aims to protect the body from the ultraviolet radiation deriving from the sun. In this framework, the wearable becomes an active, supplemental skin that not only protects the human body but also augments its functions, such as movement and respiration. The embedded knowledge enables the smart material to sense and exchange data with the environment in order to passively actuate a system that regulates the relation between the body and its surroundings in an attempt to maintain equilibrium. The design strategy is defined by 4 sequential steps: a) The definition of the technical problem, b) the analysis of the human body, c) the design of the reactive material system, as well as d) the digital simulations and the digital fabrication of the system. The aforementioned design strategies allow for accuracy as well as high performance optimization and predictability in such complex design tasks, enabling the creation of customized products, designed for individuals.
keywords smart materials; wearable technology; data driven design; reactive garment; digital fabrication; performance simulations
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2022_398
id ecaade2022_398
authors Dzurilla, Dalibor and Achten, Henri
year 2022
title What’s Happening to Architectural Sketching? - Interviewing architects about transformation from traditional to digital architectural sketching as a communicational tool with clients
doi https://doi.org/10.52842/conf.ecaade.2022.1.389
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 389–398
summary The paper discusses 23 interviewed architects in practice about the role of traditional and digital sketching (human-computer interaction) in communication with the client. They were selected from 1995 to 2018 (the interval of graduation) from three different countries: the Czech Republic (CR), Slovakia (SR), Netherland (NR). To realize three blending areas that impact the approach to sketching: (I) Traditional hand and physical model studies (1995-2003). (II)Transition form - designing by hand and PC (2004–2017). (III) Mainly digital and remote forms of designing (2018–now). Interviews helped transform 31 “parameters of tools use” from the previous theoretical framework narrowed down into six main areas: (1) Implementation; (2)Affordability; (3)Timesaving; (4) Drawing support; (5) Representativeness; (6) Transportability. Paper discusses findings from interviewees: (A) Implementation issues are above time and price. (B) Strongly different understanding of what digital sketching is. From drawing in Google Slides by mouse to sketching in Metaverse. (C) Substantial reduction of traditional sketching (down to a total of 3% of the time) at the expense of growing responsibilities. (D) 80% of respondents do not recommend sketching in front of the client. Also, other interesting findings are further described in the discussion.
keywords Architectural Sketch, Digital Sketch, Effective Visual Communication
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2017_288
id ecaade2017_288
authors Emo, Beatrix, Treyer, Lukas, Schmitt, Gerhard and Hoelscher, Christoph
year 2017
title Towards defining perceived urban density
doi https://doi.org/10.52842/conf.ecaade.2017.2.637
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 637-646
summary The aim of the paper is to identify parameters that influence perceived urban density. Whilst it is standard for architects and planners to consider urban density, there is often no consideration of how individuals might perceive such density. We report the findings of a study in which participants rate photographs of urban scenes according to perceived urban density. The case study area is central Zurich, Switzerland. The images are analyzed according to six parameters: visibility, amount of buildings, street width, amount of sky, amount of green space, and amount of vehicles. We report the findings of where images were ranked along a scale from lowest to highest perceived urban density. Findings show that visibility alone is not enough to explain the rating of perceived urban density. The study is a first step towards reaching a definition of perceived urban density that can be applied to different urban contexts.
keywords urban density; perception; behavioural study; 3D reconstruction
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_282
id ecaade2017_282
authors Ham, Jeremy, Kieferle, Joachim B. and Woessner, Uwe
year 2017
title Exploring the Three Dimensional Spatiality of Polyrhythmic Drum Improvisation
doi https://doi.org/10.52842/conf.ecaade.2017.2.629
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 629-636
summary This paper reports on creative practice design research founded on the translation of complex polyrhythmic digital drumming into the spatial domain. We outline four exercises in the use of drumming improvisation as a methodology for the spatialization of polyrhythmic drum improvisation; as static Spatial Drum Notation and representation as 3D models, artefacts and in Virtual Environments and live drumming performance inside a VR CAVE. These creative exercises bring forward concepts of affordance of musico-spatial representations, a theoretical 'musico-perspectival hinge' and the continuum of performance, notation and representation.
keywords Music and Architecture; Drumming and Polyrhythm; Virtual Reality
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_305
id ecaade2017_305
authors Luther, Mark B.
year 2017
title The Application of Daylighting Software for Case-study Design in Buildings
doi https://doi.org/10.52842/conf.ecaade.2017.1.629
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 629-638
summary The application of different software, whether simple or complex, can each play a significant role in the design and decision-making on daylighting for a building. This paper, discusses the task to be accomplished, in real case studies, and how various lighting software programs are used to achieve the desired information. The message iterated throughout the paper is one that respects, and even suggests, the use of even the simplest software, that can guide and inform design decisions in daylighting. Daylighting can be complex since the position of the sun varies throughout the day and year as well as do the sky conditions for a particular location. Just because we now have the computing capacity to model every single minute of a day throughout a year, doesn't justify its task. Several projects; an architecture studio, a university office building, a school library and a gymnasium all present different tasks to be achieved. The daylighting problems, the objects and the software application and their outcomes are presented in this paper. Over a decade of projects has led to reflecting upon the importance of computing in daylighting, its staged approach and the result that it can achieve if properly applied.
keywords Daylighting Design; Daylighting Analysis; Radiosity; Ray-tracing
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2017_095
id ecaade2017_095
authors Trento, Armando, Woessner, Uwe, Kieferle, Joachim B. and Cataldo, Andrea
year 2017
title DSA - Digital Support for Art - Process and Tools to Realize a Large Sculpture in a Heritage Urban Environment
doi https://doi.org/10.52842/conf.ecaade.2017.1.571
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 571-580
summary This paper reports on a research project oriented to support the communication for, and realization of a sculptural masterpiece within an urban context in the historic centre of Rome. The sculpture has been installed just a few months before the 2017 eCAADe, thus enabling conference participants to explore the final output in situ. While the whole process of creation of the art piece is outlined, our focus is on the description of implementing various technologies like laser scanning, Virtual Reality (VR) and Numerical Simulations that have been used to accomplish the relevant tasks. The general field of investigation is how digital tools and a VR approach to modelling, simulating and developing sculptural components of an artwork could facilitate the workflow between artist, client, designers, engineers, urbanists, archaeologists, art foundry fabricators and public authorities. Methodologically, an action research approach was adopted for this project, primarily for its ability to link between research and practice in order to solve a realistic multidisciplinary problem in its actual setting.
keywords Cross-disciplinary Collaboration; Virtual Reality; Integrated Design; CAVE; Digital Support for Art
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2017_032
id sigradi2017_032
authors Jara-Figueroa, Rocío; Hernán Ascuí-Fernández, Roberto Burdiles-Allende, Freddy Guzmán-Garcés
year 2017
title Diseño metodológico en investigación del espacio urbano basado en el registro sonoro. Caso de estudio: Plaza de la independencia, ciudad de Concepción. [Methodological design for urban space research based on sound recording. Case study: Plaza de la Independencia, Concepción.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.223-230
summary This work reports the results of applying phenomenological methods during the final stage of architecture studies in Universidad del Bío-Bío. The introduced case study delves in the importance of designing research methodologies that promote interdisciplinary studies to achieve an integrated view of urban phenomena. In this work, we advance the understanding of the urban space by exploring graphic resources and digital recordings to characterize the soundscape of “Plaza de la Independencia” in the city of Concepción, Chile. Our findings focus on the relationship between the urban environment, the activities that take place and the sounds recorded in the urban space.
keywords Architecture education, phenomenology, soundscape.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2017_039
id sigradi2017_039
authors González Böhme, Luis Felipe; Francisco Javier Quitral Zapata, Sandro Maino Ansaldo, Marcela Hurtado Saldías
year 2017
title Reconstrucción robotizada del patrimonio arquitectónico chileno en madera [Robotic reconstruction of Chilean wooden architectural heritage]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.267-272
summary We present a proof of concept of parametric 3D models of fully associative geometry and milling tool paths for the robotic machining of traditional timber joints, using a visual robot-programming environment integrated into a popular CAD software. A representative sample of traditional timber joints was obtained from a field survey conducted in Valparaíso, Chile. Each specimen was theoretically validated in nearly half a hundred carpentry treatises and manuals corresponding to the historical period in which the surveyed buildings were built. Parametric robotic milling prototypes were experimentally validated in manufacturing process using two industrial robots with different spindles and cutting tools.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2017_043
id sigradi2017_043
authors Griz, Cristiana; Natália Queiroz, Carlos Nome
year 2017
title Edificação Modular: Estudo de caso e protótipo de um sistema construtivo de código aberto utilizando prototipagem rápida [Modular Building: Case study and prototype of an open source modular system using rapid prototyping]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.293-300
summary This paper presents the research development for a base structural module for the Casa Nordeste project. Casa Nordeste is a compact housing experiment that will participate in the Solar Decathlon Latin America competition. It consists of a modular building that houses living, cooking, and sanitizing space. Developments presented are based on digital design and fabrication principles and processes, through algorithms that allow its customization. In this sense, discussions begin with a brief theoretical discussion about the concepts that underline the project: evolutionary housing; digital technologies that improve design and construction; open source construction and generative design systems. The paper finalizes by presenting and discussing developments of three different design aspects of the structural module: (a) geometry of the frames, (b) its modulation, and (c) fittings and joining mechanisms.
keywords Digital fabrication; Rapid prototyping; Visual programming; Compact housing.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

No more hits.

HOMELOGIN (you are user _anon_730338 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002