CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id caadria2017_069
id caadria2017_069
authors Dritsas, Stylianos, Chen, Lujie and Sass, Lawrence
year 2017
title Small 3D Printers / Large Scale Artifacts - Computation for Automated Spatial Lattice Design-to-Fabrication with Low Cost Linear Elements and 3D Printed Nodes
doi https://doi.org/10.52842/conf.caadria.2017.821
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 821-830
summary The presented process enables users to design, fabricate and assemble spatial lattices comprised of linear stock materials such as round section timber, aluminum or acrylic dowels and complex 3D printed joints. The motivation for the development of this application is informed by the incredible availability of low cost 3D printers which enable anyone to produce small scale artifacts; deploying rapid prototyping to achieve larger scale artifacts than the machine's effective work envelope is a challenge for additive manufacturing; and the trend in the design computing world away highly technical specialized software towards general public applications.
keywords Design Computation; Digital Fabrication; 3D Printing; Spatial Lattices; Design to Production
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2017_005
id caadria2017_005
authors Xia, Tian, Koh, Jing Lin, Chen, Yutong, Goh, Yi Qian and Dritsas, Stylianos
year 2017
title Form-finding with Robotics - Fusing Physical Simulation and Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2017.893
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 893-902
summary We present an experimental digital design and fabrication process investigating the integration of form-finding and industrial robotics. The design process is inspired by classical experiments producing minimal surfaces and tensile structures via physical simulation. The fabrication process resembles thermoforming whereby sheets of PET material are heat treated and while in a malleable state, where the material behaves like stretchable fabric, an industrial articulated robotic arm impresses a form while the sheet is air cooled and its final shape becomes stable and rigid. The three-dimensional plastic sheets are used as molds for glass-reinforced concrete casting. The key aspects of our approach include: (a) Mold-less fabrication: the design of our robotic end-effector can produce a range of free-form geometries without need for complex mold making (b) Reusable and durable artifacts: unlike traditional physical form-finding processes where the derived form is often ephemeral or fragile our process affords the detachment of a rigid artifacts which can be digitized, used as-is or employed in (c) Multi-stage fabrication: as the form-found geometry can be directly used for processes such as casting with excellent results in terms of surface finish. We present the design and development of our system and its deployment for an installation artwork.
keywords Form-Finding; Digital Fabrication; Architectural Robotics
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_29028 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002