CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 9 of 9

_id cf2017_596
id cf2017_596
authors Fukuda, Tomohiro; Nada, Hideki; Adachi, Haruo; Shimizu, Shunta; Takei, Chikako; Sato, Yusuke; Yabuki, Nobuyoshi; Motamedi, Ali
year 2017
title Integration of a Structure from Motion into Virtual and Augmented Reality for Architectural and Urban Simulation: Demonstrated in Real Architectural and Urban Projects
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 596.
summary Computational visual simulations are extremely useful and powerful tools for decision-making. The use of virtual and augmented reality (VR/AR) has become a common phenomenon due to real-time and interactive visual simulation tools in architectural and urban design studies and presentations. In this study, a demonstration is performed to integrate Structure from Motion (SfM) into VR and AR. A 3D modeling method is explored by SfM under realtime rendering as a solution for the modeling cost in large-scale VR. The study examines the application of camera parameters of SfM to realize an appropriate registration and tracking accuracy in marker-less AR to visualize full-scale design projects on a planned construction site. The proposed approach is applied to plural real architectural and urban design projects, and results indicate the feasibility and effectiveness of the proposed approach.
keywords Architectural and urban design, Visual simulation, Virtual reality, Augmented reality, Structure from motion.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
doi https://doi.org/10.52842/conf.caadria.2019.1.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
doi https://doi.org/10.52842/conf.caadria.2019.2.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
doi https://doi.org/10.52842/conf.caadria.2019.2.451
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
doi https://doi.org/10.52842/conf.caadria.2018.2.165
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
doi https://doi.org/10.52842/conf.caadria.2018.2.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_172927 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002