CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 12 of 12

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
doi https://doi.org/10.52842/conf.caadria.2017.841
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
doi https://doi.org/10.52842/conf.caadria.2019.1.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_011
id ecaade2017_011
authors Haeusler, M. Hank, Asher, Rob and Booth, Lucy
year 2017
title Urban Pinboard - Development of a platform to access open source data to optimise urban planning performance
doi https://doi.org/10.52842/conf.ecaade.2017.1.439
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 439-448
summary In this paper we present our research to design and develop 'Urban Pinboard', a platform to optimise urban planning process and performance. We argue that second machine age general purpose technologies can now be accessed for city modelling. Based on the observation that: GIS does offer a depository that can display urban data; data sets exist but often stored at different locations; there is a discrepancy of access to planning information; and the data often are not accessible to private / public sector and the general public on one location, Urban Pinboard aims to address these problems as an integrated digital platform that enables the public, private and community sectors to connect by contributing ideas, comments and proposals on all planning issues in a single platform. The paper outlines the background research, methodology and introduces the Urban Pinboard's features to create a single source of truth for planning data.
keywords Software development; web-based GIS platform; Urban Planning; planning data
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2017_003
id ecaade2017_003
authors Yu, Kuai, Haeusler, M. Hank and Fabbri, Alessandra
year 2017
title Parametric master planning via topological analysis using GIS data
doi https://doi.org/10.52842/conf.ecaade.2017.1.429
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 429-438
summary This paper discusses parametricism in regards to urban planning and infrastructure. The objective is to bridge GIS data (using FLUX) and the parametric design process together into urban master planning. Creating a tool which generates the infrastructure and grid system automatically using specified manual user inputs, allowing for further generation of 3D forms from the block patterns. It also critically analyses the traditional master planning approach of grid system division in regards to topography, and how classical urban designers did not consider topographical constraints when a square grid system was employed to structure a city. The analysis of existing parametric master plans will also show that data driven planning has not put topography as a significant hierarchical. Through case studies using the developed tool, a clearer understanding of how topography can shape infrastructure can be understood. The analysis of topography is the main driving data iteration point which generates the infrastructure, grid, and division systems.
keywords Master Plan; Parametricism; Urban Design; GIS Data; Topography Optimisation; FLUX
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2017_146
id ecaade2017_146
authors Zavoleas, Yannis and Haeusler, M. Hank
year 2017
title Extended modelling - Dynamic approaches applied to design reef habitats at Sydney Harbour
doi https://doi.org/10.52842/conf.ecaade.2017.1.067
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 67-74
summary This paper outlines a critical approach to computation in architecture by using multi-agent systems and dynamic simulation tools. Such methods reinforce viewing design as a data-driven process, whereby a problem is analysed to a set of agents and their properties. The related actions assume extensive modelling techniques, recursive experimentation and testing to assist design since the early stages until completion. In reflection, similar methods are employed to tackle problems of content other than architecture. The experiment being discussed is Bio-shelters. It involves designing artificial coral reefs to be placed at the Sydney Harbour, aiming to improve the living conditions of seashell and other endangered organisms. This paper first describes reefs as highly sophisticated ecosystems; then, it proposes methods for designing and constructing ones, further commenting onto their shape, fabrication, materiality and on-site placement, consequently reinforcing that extensive modelling techniques currently applicable in architecture may also respond to different scenarios about our settlements and the environment.
keywords Dynamic simulation; data-driven design; multi-agent systems; computational tools
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2017_115
id caadria2017_115
authors Araullo, Rebekah and Haeusler, M. Hank
year 2017
title Asymmetrical Double-Notch Connection System in Planar Reciprocal Frame Structures
doi https://doi.org/10.52842/conf.caadria.2017.539
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 539-548
summary Reciprocal Frame Structures (RF) have broad application potentials. Flexible to using small available materials, they span large areas, including varied curvature and doubly-curved forms. Although not many buildings using RF have been constructed to date, records indicate RF efficiencies where timber was widely used in structures predating modern construction. For reasons of adaptability and economy, advances in computation and fabrication precipitated increase in research into RF structures as a contemporary architectural typology. One can observe that linear timber such as rods and bars feature in extensive RF research. However, interest in planar RF has only recently emerged in research. Hence one can argue that planar RF provides depth to explore new design possibilities. This paper contributes to the growing knowledge of planar RF by presenting a design project that demonstrates an approach in notching systems to explore design and structural performance. The design project, the developed design workflow, fabrication, assembly and evaluation are discussed in this paper.
keywords Reciprocal Frame Structures; Space Frames; Computational Design; Digital Fabrication; Deployable Architecture
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
doi https://doi.org/10.52842/conf.caadria.2019.2.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
doi https://doi.org/10.52842/conf.caadria.2019.2.451
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_043
id caadria2017_043
authors Coorey, Anycie, Haeusler, M. Hank and Coorey, Ben
year 2017
title Predictive Urban Analytics - Exploring Choice Modelling and Revealed Preferences for Urban Design
doi https://doi.org/10.52842/conf.caadria.2017.209
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 209-218
summary Since the rise of generative design, a morphogenetic process of designing has emerged where algorithms are used to explore potential permutations of a solution to find the best design option. Yet, on a subjective level, identifying what option is considered best has often proven to be difficult. Hence, the paper discusses a foundation research to investigate prototypically subjective judgments concern matters of value and preference defined by end users in generative modelled urban design outcome. To do so the paper will introduce and outline research findings in the field of Micro-Economics, in particular its subcategories 'Choice Modelling' as a method and 'Revealed Preferences' as a methodology to assess whether user preferences can be identified and engaged as 'preferred' design options. In the paper the research will outline in greater depth the theories behind Choice Modelling and Revealed Preferences, a field that studies the behaviour of individuals, and its relevance for urban design, in particular Computational Urbanism. The paper discusses how Choice Modelling can analyse design outcomes and conclude and speculate about its use in an applied context.
keywords Generative design; Aesthetic judgment; Choice modelling; revealed preference; design evaluation.
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_027
id caadria2017_027
authors Johanson, Madeleine, Khan, Nazmul, Asher, Rob, Butler, Andrew and Haeusler, M. Hank
year 2017
title Urban Pinboard - Establishing a Bi-directional Workflow Between Web-based Platforms and Computational Tools
doi https://doi.org/10.52842/conf.caadria.2017.715
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 715-724
summary Architecture is heading towards a future where data is collected, collated and presented in a dynamic platform. There is a potential for many standard processes in the industry to become automated, such as the site analysis process. Streamlining aspects of the design process allows architects to pay greater attention on creative design solutions for their buildings and less time engaging in complex, time consuming analytical programs. Urban Pinboard, a web-based GIS platform, promises to establish a bi-directional workflow between web data depositories and computational tools through the medium of a website. By doing so, the website allows users with minimal experience in computational processes to be engaged in the utilisation of these large datasets. Through the automation of these processes, relationships within the built environment industry can excel, leading towards performative driven designs.
keywords Urban Planning; Computational Urbanism; Data-driven Design; New Workflow Models; Software Development.
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_028
id caadria2017_028
authors Sharah, Lachlan, Escalante, Erik, Fabbri, Alessandra, Guillot, Romain and Haeusler, M. Hank
year 2017
title Streamlining the Modelling to Virtual Reality Process - Semi-Automating Mesh Quadrangulation and UV Unwrapping for Grasshopper.
doi https://doi.org/10.52842/conf.caadria.2017.053
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 53-62
summary Visualisation in architecture often involves a transition between different modelling programs. This is done in order to be able to manually prepare and repair three-dimensional models for visualisations such as renders and VR simulations. In this paper the development of a direct link between a three-dimensional modelling platform and a Virtual Reality (VR) Engine is investigated. This is researched through the generation and manipulation of clean quad mesh topology, UV mapping and UV texture map creation. Through a reiterative process, all possible solutions for improved quad mesh topology for doubly curved surfaces are explored. The resulting clean quad mesh improves the usability of the model and application of textures to accurately simulate a real material. In parallel, the development of a UV unwrapping and UV map creation process was investigated to enhance the texturing process inside the same architectural modelling platform. The overall system was developed as an advanced tool for semi-automating and streamlining the process between modelling and VR simulation. The paper concludes with the limitations of the process and points out to future research to improve speed and quality as well guides to where future testing and experiments should be further investigated and applied.
keywords Virtual Reality; Quadrangulation; UV unwrapping; Physics Simulation
series CAADRIA
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_958785 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002