CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 8 of 8

_id cf2017_349
id cf2017_349
authors Kim, Eonyong; Kim, Kibum; Choo, Seungyeon; Ryu, Jikeun
year 2017
title Rule-based Security Planning System for Practical Application
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 349-359.
summary Security planning is a vital part of the operation and management phase in a building’s life cycle. Ideally, this will be addressed during the building design phase. However, reality often differs from this ideal. In the real world, information such as floor plans tend to insufficiently describe or imperfectly match physical buildings, and must be surveyed and re-worked during security planning. Because of this, security companies require two kinds of staff: those in the security business and those in charge of planning, including floor plan verification. This research focused on creating an efficient way to help staff in this work environment develop a system of security planning for buildings and facilities using a rule-based approach in a tailormade CAD system. In this research, we developed a new 3D CAD system for desktops and mobile devices, which specializes in security planning using a game-engine. To avoid errors during security planning, a rule-based check system was developed and integrated into the CAD system. The rule-set of this rule base was built from the security planning manual, including guidelines on equipment layout and wiring in various situations, which could then be used in the development of an automated check. This research describes the method of system development and final results.
keywords Security Planning, Operation and Management, Rule Base, BIM, CAD
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2021_354
id caadria2021_354
authors Huang, Chenyu, Gong, Pixin, Ding, Rui, Qu, Shuyu and Yang, Xin
year 2021
title Comprehensive analysis of the vitality of urban central activities zone based on multi-source data - Case studies of Lujiazui and other sub-districts in Shanghai CAZ
doi https://doi.org/10.52842/conf.caadria.2021.2.549
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 549-558
summary With the use of the concept Central Activities Zone in the Shanghai City Master Plan (2017-2035) to replace the traditional concept of Central Business District, core areas such as Shanghai Lujiazui will be given more connotations in the future construction and development. In the context of todays continuous urbanization and high-speed capital flow, how to identify the development status and vitality characteristics is a prerequisite for creating a high-quality Central Activities Zone. Taking Shanghai Lujiazui sub-district etc. as an example, the vitality value of weekday and weekend as well as 19 indexes including density of functional facilities and building morphology is quantified by obtaining multi-source big data. Meanwhile, the correlation between various indexes and the vitality characteristics of the Central Activities Zone are tried to summarize in this paper. Finally, a neural network regression model is built to bridge the design scheme and vitality values to realize the prediction of the vitality of the Central Activities Zone. The data analysis method proposed in this paper is versatile and efficient, and can be well integrated into the urban big data platform and the City Information Modeling, and provides reliable reference suggestions for the real-time evaluation of future urban construction.
keywords multi-source big data; Central Activities Zone; Vitality; Lujiazui
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2017_017
id caadria2017_017
authors Park, Hyejin, Lee, Seunghyun, Kim, Eonyong and Choo, Seungyeon
year 2017
title A Proposal for Building Safety Diagnosis Processes using BIM-based Reverse Engineering Technology
doi https://doi.org/10.52842/conf.caadria.2017.673
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 673-682
summary Recently, the aging of buildings is accelerating around the world. In line with this, architectural structures constructed long time ago require life extension and ongoing management and protection for improvement, because they are too deteriorated. In particular, since structural safety inspection and analysis in building is very important, 'DFS (Design For Safety)'system has been introduced and conducted at the national level in Korea for the whole building life cycle management system encompassing the entire design, work commencement, construction, and completion stages. However, we do not have a system ranging from repair and reinforcement work plans in doing safety design, structural inspection and analysis to ongoing safety inspection. Therefore, it is necessary to establish a system to produce and share integrated information and conduct a research to manage architectural structure across the whole life cycle. Accordingly, this study aims to propose BIM-based reverse engineering technology for generating a safety management model based on laser scanner, verify the investigation items to be utilized of the design when building safety, and seek ways to utilize them for safety design.
keywords BIM; reverse engineering; building safety diagnosis; laser scanning; design for safety
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2017_062
id caadria2017_062
authors Ji, Seung Yeul, Kim, Mi Kyoung and Jun, Han Jong
year 2017
title Campus Space Management Using a Mobile BIM-based Augmented Reality System
doi https://doi.org/10.52842/conf.caadria.2017.105
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 105-114
summary In South Korea, the changing paradigm of family composition toward single-person households and nuclear families has caused the decrease in number of students, which has led to the need for change in the qualitative, rather than quantitative, management of spaces and facilities on university campuses. In particular, since 2005, the merging of universities have accelerated, which has brought up the need for a system that facilitates the management of integrated university systems. Accordingly, universities now require efficient system operation based on three-dimensional and data visualization, unlike the document-based management of facilities and spaces in the past. Users lack a sense of responsibility for public facilities, causing difficulties such as energy waste and frequent movement, as well as damage and theft of goods. This study aims to form an AR-based interface using the ANPR algorithm, a computer vision technique, and the position-based data of the GPS. It also aims to build a campus space management system to overcome the limitations of current systems and to effectively and systematically manage integrated building data. In addition, for module test verification, the prototype is applied to actual campus spaces, and additional demands for campus space management in the AR application are identified and organized.
keywords augmented reality; Campus space management; BIM; CAFM (computer-aided facilities management); user experience (UX)
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_135
id caadria2017_135
authors Kim, Hayan, Lee, Jin-Kook, Shin, Jaeyoung and Choi, Jungsik
year 2017
title BIM-Supported Visual Language to Define Building Design Regulations
doi https://doi.org/10.52842/conf.caadria.2017.603
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 603-612
summary Growing number of Building Information Modeling (BIM) applications have supported the automated assessment of building design and its quality in the early phase of design. For increasing the accuracy and fineness of assessment, rule interpretations require logical base and standardization of analysis process. Therefore, some government-funded research projects have focused on this rule-making process separated from the rule-checking process. Specifically, KBimLogic is a logic rule-based mechanism designed for the building permit related rules in Korea Building Act sentences. As a com-puter-readable definition of a rule, KBimCode has been developed to be executed in actual rule-checking software. The limitation of such code is the visibility to the rule experts who are usually non- or novice programmers. This paper describes much intuitive way of defining and generating KBimCode through KBim Visual Language. User can easily query the building element and method through the immanent connection with KBimLogic database. By using the KBim Visual Language, various types of rules written in design guideline, international standardization, and national acts can be easily interpreted into computer-readable formats such as KBimCode in order to proceed with the automated rule-checking.
keywords BIM (Building Information Modeling); Visual Language; Korea Building Act; Automated Design Process; Rule-making
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2017_567
id cf2017_567
authors Kim, Ikhwan; Lee, Injung; Lee, Ji-Hyun
year 2017
title The Expansion of Virtual Landscape in Digital Games: Classification of Virtual Landscapes Through Five principles
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 567-584.
summary This research established classification system which contains five principles and variables to classify the types of the virtual landscape in digital games. The principles of the classification are Story, Space Shape, Space and Action Dimension, User Complexity and Interaction Level. With this classification system, our research group found the most representative types of virtual landscape in the digital game market through 1996 to 2016. Although mathematically there can be 288 types of virtual landscape, only 68 types have been used in the game market in recent twenty years. Among the 68 types, we defined 3 types of virtual landscape as the most representative types based on the growth curve and a number of cases. Those three representative types of virtual landscapes are Generating / Face / 3D-3D / Single / Partial, Providing / Chain / 3D-3D / Single / Partial and Providing / Linear / 2D-2D / Single / Partial. With the result, the researchers will be able to establish the virtual landscape design framework for the future research.
keywords Digital Game, Virtual Landscape, Game Design, Game Classification
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_085
id caadria2017_085
authors Lee, Yong-Ju, Kim, Mi-Kyoung and Jun, Han-Jong
year 2017
title Green Standard for Energy and Environmental Design - The Development of an Assessment System Based on a Green BIM Template
doi https://doi.org/10.52842/conf.caadria.2017.623
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 623-632
summary To construct a building that meets the requirements of certification in terms of environmental friendliness, there must be a process that considers the certification criteria from the initial design phase. However, there are numerous complicated task performance procedures to analyse many required items in detail as well as perceive and apply the data requirements efficiently. Currently, Building Information Modeling (BIM) is gaining attention as a solution for environmental problems in architecture. BIM shows precisely how a virtual building is modelled in the real world, thereby providing an objective information and analysis through a simulation. However, the result values of BIM library or modelling may turn out differently as a result of the work environment of designers or users that is not standardized. Therefore, this study applies the modelled and extracted BIM data using the template and library established in the BIM add-in planning and design phase to review in advance the Green Standard for Energy and Environmental Design (G-SEED) assessment by item and manual input of users with the BIM-based (add-in) G-SEED assessment system, thereby providing support to enable users to establish specific strategies in designing green buildings.
keywords GBT; G-SEED; BIM System; BIM Add-in; Apartment
series CAADRIA
email
last changed 2022/06/07 07:52

No more hits.

HOMELOGIN (you are user _anon_327609 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002