CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id ecaade2017_225
id ecaade2017_225
authors Rossi, Andrea and Tessmann, Oliver
year 2017
title Geometry as Assembly - Integrating design and fabrication with discrete modular units
doi https://doi.org/10.52842/conf.ecaade.2017.2.201
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 201-210
summary This paper proposes a design and fabrication approach based on the conceptualization of architectural formations as spatial assemblies of discrete building blocks to be aggregated through custom robotic procedures. Such strategy attempts to create synergies between different technological methods and to define a new and open design space where discrete design, serial prototyping and robotic assembly can be exploited to create complex reconfigurable structures. With the aim to allow users to explore the field of discrete geometries for architectural application without need for prior programming knowledge, we developed a software framework for representing and designing with discrete elements, different digital fabrication techniques integrated with conventional production processes for serial prototyping of repetitive units, and custom robotic fabrication routines, allowing a direct translation from aggregated geometry to assembly toolpath. Together these methods aim at creating a more direct connection between design and fabrication, relying on the idea of discrete elements assembly and on the parallel between modular design and modularized robot code generation.
keywords Digital Materials; Robotic Assembly; Discrete Design; Modular Fabrication; Design Tools
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
doi https://doi.org/10.52842/conf.acadia.2017.512
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id sigradi2017_086
id sigradi2017_086
authors Rossi, Ludovica; Fernando Juan Ramos Galino
year 2017
title Estructura de Neumáticos Bio-Inspirada en la Madera de Cactus [Tire Structure Bio-Inspiredto the Cactus Wood]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.598-604
summary This study aims to reproduce the biological mechanisms of the living tissue of cactus plants. The construction of small-scale physical models, in bicycle tire bands, allows verifying the response of the bands to the applied stresses. The study of the morphology in the elastic field defines the form in relation to different levels of deformations, also according the equilibrium dynamics that are generated. The process of digital representation allows understanding how the morphology works, by coding and systematizing the associated geometries. The virtual model integrates and completes the physical model allowing extrapolating the dynamic aspects of the construction process.
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2017_306
id ecaade2017_306
authors Rossi, Michela and Buratti, Giorgio
year 2017
title Form is Matter - Triply periodic minimal surfaces structures by digital design tools
doi https://doi.org/10.52842/conf.ecaade.2017.2.259
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 259-268
summary Architecture and biology teach that the shape affects mechanical behaviour of structures therefore geometry is the basic concept of design, with an ethic responsible and sustainable approach, following the nature's organic model. Industrial design may apply formal properties of elementary shapes and basic design rules to manage the "geometrical behaviour" of new structural surfaces. The research aims to apply digital tools to the design of surface structures that maximise the matter efficiency in the development of "solid fabrics" with parametric controlled geometry.
keywords Minimal surfaces; Parametric and generative design; Shape and form studies; Digital fabrication
series eCAADe
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_68009 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002