CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id cf2017_414
id cf2017_414
authors Shireen, Naghmi; Erhan, Halil; Woodbury, Robert; Wang, Ivy
year 2017
title Making Sense of Design Space: What Designers do with Large Numbers of Alternatives?
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 414.
summary Today’s generative design tools and large screen displays present opportunities for designers to explore large number of design alternatives. Besides numerous studies in design, the act of exploring design space is yet to be integrated in the design of new digital media. To understand how designer’s search patterns will uncover when provided with a gallery of large numbers of design solutions, we conducted a lab experiment with nine designers. Particularly the study explored how designers used spatial structuring of their work environment to make informed design decisions. The results of the study present intuitions for development of next generation front-end gallery interfaces for managing a large set of design variations while enabling simultaneous editing of design parameters.
keywords Parametric design, Alternatives, Design space exploration, New interfaces, New media, Protocol analysis, User study
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_074
id caadria2017_074
authors Erhan, Halil, Chan, Janelynn, Fung, Gilbert, Shireen, Naghmi and Wang, Ivy
year 2017
title Understanding Cognitive Overload in Generative Design - An Epistemic Action Analysis
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 127-136
doi https://doi.org/10.52842/conf.caadria.2017.127
summary Choice overload is experienced when designers use generative systems to explore a large number of alternatives. In an experiment, we studied the epistemic actions designers perform to reduce their cognitive load caused by possible choice overload during design exploration. The participants were asked to select alternatives among a large set of solutions in a simulated design environment. For data encoding, we adapted an epistemic action analysis method to understand which actions occurs in what phase of design. Most epistemic actions are observed during criteria applying phase. The most frequent actions were 'clustering and grouping' and 'talking and gestures to guide attention'. Ultimately our goal is to answer if a system can alleviate the possible cognitive overload when working with a large number of alternatives, if so how they would look when implemented.
keywords generative design; parametric modeling; cognitive overload; selection; epistemic actions
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2017_402
id cf2017_402
authors Erhan, Halil; Shireen, Naghmi
year 2017
title Juxtaposed Designs Models: A Method for Parallel Exploration in Parametric CAD
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 402-412.
summary Computational tools mainly support authoring single-state models, which fall short in enabling designers to work with multiple solutions side-byside. This is a natural design behaviour commonly observed when designers use other media or improvise digital tools to explore alternatives. In this paper we attempt to formalize a method that aims to help designers to create multiple design alternatives derived from a base parametric model and its controllers. The goal is to change alternative designs such that each alternative can respond to changes as their internal structures allow. We present five assumptions on the tools that this can be achieved and also a parametric design pattern to be used in similar situations. Despite the complexity of the models, we can demonstrate the possibility of working with multiple solutions in architectural design.
keywords -
series CAAD Futures
email
last changed 2017/12/01 14:38

No more hits.

HOMELOGIN (you are user _anon_819752 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002