CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 8 of 8

_id acadia17_474
id acadia17_474
authors Peng, Wenzhe; Zhang, Fan; Nagakura, Takehiko
year 2017
title Machines’ Perception of Space: Employing 3D Isovist Methods and a Convolutional Neural Network in Architectural Space Classification
doi https://doi.org/10.52842/conf.acadia.2017.474
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 474- 481
summary Simple and common architectural elements can be combined to create complex spaces. Different spatial compositions of elements define different spatial boundaries, and each produces a unique local spatial experience to observers inside the space. Therefore an architectural style brings about a distinct spatial experience. While multiple representation methods are practiced in the field of architecture, there lacks a compelling way to capture and identify spatial experiences. Describing an observer’s spatial experiences quantitatively and efficiently is a challenge. In this paper, we propose a method that employs 3D isovist methods and a convolutional neural network (CNN) to achieve recognition of local spatial compositions. The case studies conducted validate that this methodology works well in capturing and identifying local spatial conditions, illustrates the pattern and frequency of their appearance in designs, and indicates peculiar spatial experiences embedded in an architectural style. The case study used small designs by Mies van der Rohe and Aldo van Eyck. The contribution of this paper is threefold. First, it introduces a sampling method based on 3D Isovist that generates a 2D image that can be used to represent a 3D space from a specific observation point. Second, it employs a CNN model to extract features from the sampled images, then classifies their corresponding space. Third, it demonstrates a few case studies where this space classification method is applied to different architectural styles.
keywords design methods; information processing; AI; machine learning; computer vision; representation
series ACADIA
email
last changed 2022/06/07 08:00

_id cf2017_101
id cf2017_101
authors Chen, Nai Chun; Zhang, Yan; Stephens, Marrisa; Nagakura, Takehiko; Larson, Kent
year 2017
title Urban Data Mining with Natural Language Processing: Social Media as Complementary Tool for Urban Decision Making
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 101-109.
summary The presence of web2.0 and traceable mobile devices creates new opportunities for urban designers to understand cities through an analysis of user-generated data. The emergence of “big data” has resulted in a large amount of information documenting daily events, perceptions, thoughts, and emotions of citizens, all annotated with the location and time that they were recorded. This data presents an unprecedented opportunity to gauge public opinion about the topic of interest. Natural language processing with social media is a novel tool complementary to traditional survey methods. In this paper, we validate these methods using tourism data from Trip-Advisor in Andorra. “Natural language processing” (NLP) detects patterns within written languages, enabling researchers to infer sentiment by parsing sentences from social media. We applied sentiment analysis to reviews of tourist attractions and restaurants. We found that there were distinct geographic regions in Andorra where amenities were reviewed as either uniformly positive or negative. For example, correlating negative reviews of parking availability with land use data revealed a shortage of parking associated with a known traffic congestion issue, validating our methods. We believe that the application of NLP to social media data can be a complementary tool for urban decision making.
keywords Short Paper, Urban Design Decision Making, Social Media, Natural Language Processing
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
doi https://doi.org/10.52842/conf.caadria.2019.2.451
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_101
id caadria2017_101
authors Dounas, Theodoros, Spaeth, Benjamin, Wu, Hao and Zhang, Chenke
year 2017
title Speculative Urban Types - A Cellular Automata Evolutionary Approach
doi https://doi.org/10.52842/conf.caadria.2017.313
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 313-322
summary The accelerated rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original 2-dimensional functionality into the realm of three dimensions and enriched with the possibility of resizing the involved cells according to their function. Moreover our method integrates the "social condenser" as a means of diversifying functional distribution within the Cellular Automata as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a ,yet limited, evaluation procedure including solar radiation which can be extended to other performance criteria in future work.
keywords integrated Speculation; Generative Urbanism; Cellular Automata
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2017_648
id cf2017_648
authors Dounas, Theodoros; Spaeth, A. Benjamin; Wu, Hao; Zhang, Chenke
year 2017
title Dense Urban Typologies and the Game of Life: Evolving Cellular Automata
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 648-666.
summary The ongoing rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of existing developments and respective building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original 2-dimensional functionality into the realm of three dimensions and enriched with the opportunity of resizing the involved cells according to their function. Moreover our method integrates an earlier technique of constrcuctivists namely the “social condenser” as a means of diversifying functional distribution within the Cellular Automata as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a ,yet limited, evaluation procedure including solar radiation which can be extended to other performance criteria in future work.
keywords Evolutionary Design, Generative Urbanism, Integrated Strategy
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_033
id caadria2017_033
authors Qu, Tengteng, Zang, Wei, Peng, Zhenwei, Liu, Jun, Li, Weiwei, Zhu, Yun, Zhang, Bin and Wang, Yongsheng
year 2017
title Construction Site Monitoring Using UAV Oblique Photogrammetry and BIM Technologies
doi https://doi.org/10.52842/conf.caadria.2017.655
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 655-662
summary Traditional construction site monitoring primarily relies on a human presence. Automated construction progress monitoring is expected to make this process much more efficient and precise. The planned state of construction (as-planned) must be validated by the actual state (as-built) during automated construction progress monitoring. This research uses an integrated application of high-resolution low-altitude UAV (Unmanned Aerial Vehicle) oblique photogrammetry and Building Information Modeling (BIM) technologies for construction site management. A case study was carried out for a renewable energy development program in the JiaDing District of Shanghai, China. A high-resolution 3D model of the construction site acquired by our multi-motor UAV provides data to illustrate the as-built state of the construction program. Comparison of the UAV-based 3D model (as-built) with the BIM-based 3D model (as-planned) for a specific chimney was used for dynamic construction site monitoring. Our results show 3D illustrations of construction progress. This research demonstrates that the BIM technology in conjunction with the use of UAV photogrammetry provides efficient and precise as-built data collection and illustration of construction progress.
keywords Oblique Photogrammetry; UAV; 3D modeling; BIM; construction site monitoring
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2017_136
id caadria2017_136
authors Zhang, Cheng and Ong, Lijing
year 2017
title Optimization of Window-Wall-Ratio using BIM-based Energy Simulation
doi https://doi.org/10.52842/conf.caadria.2017.397
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 397-405
summary In this research, sensitivity analysis is applied to investigate the impact from U-values of walls, U-value of windows, and the window-to-wall ratio. The purpose is to find the co-relationship between those parameters with the building energy performance, including embedded energy in materials and operational energy during the lifecycle. Building Information Modeling (BIM) is used as a platform to obtain the material quantities and carry on energy simulation. A case study is applied for a manufactory plant in Suzhou, China. By applying both local sensitivity analysis and global sensitivity analysis, it is found that thermal properties of walls have insignificant impact on Operational Energy to Embodied Energy (OE-EE) relationship of Window-Wall-Ratio (WWR) whereas changing thermal properties of windows affects the OE-EE relationship behaviour of WWR. Lowering U-value of windows brings positive impact to the OE-EE relationship of WWR, and vice versa. Therefore, suggestions are made as reducing/increasing U-value of windows while increasing/decreasing the WWR of building.
keywords Building Informaion Modeling; Window-Wall-Ratio; energy simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2017_048
id caadria2017_048
authors Zhang, Pengyu, Xu, Weiguo, Huang, Weixin, Zhu, Yufeng, Dai, Rui and Luo, Dan
year 2017
title Generative Design Based on Sponge Spicules' Forms
doi https://doi.org/10.52842/conf.caadria.2017.509
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 509-518
summary A bio-based generative design approach is proposed with an application based upon sponge spicules. The approach aims to generate new valid architectural form finding methodology through the imitation of biological forms. The process includes five stages: Prototype Study, Imitation, Creation, Application and Fabrication. In the development of the approach, sponge spicules' forms, which are uniquely varied in the nature, are digitally imitated. Based on the imitation, a variety of formal outcomes are created. Some are suitable for architectural design and can be properly fabricated. Both the approach and the application on sponge spicules may contribute to the bio-based creative design exploration.
keywords Generative Design; Design Approach; Biomimicry; Sponge Spicules
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_468905 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002