CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id sigradi2017_033
id sigradi2017_033
authors Juliani Pereira, Vinícius; Juliana Harrison Henno
year 2017
title O Pensamento Algorítmico Associado ao Origami no Contexto de um Laboratório de Fabricação Digital [The algorithmic thinking associated with Origami at a digital fabrication laboratory context]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.231-236
summary This article addresses an experiment carried out in the context of a digital fabrication laboratory and which purpose was to introduce basic algorithm concepts through the practice of Origami. The logical thinking associated with the area of programming is not common in the Brazilian educational institutions curriculum. This reality is noticeable in the environment of a FabLab, since it has a day dedicated to the free access and use of the community. No prerequisites are needed in order to attend the open day, enabling people to have access to numerically controlled equipments. For a conscientious use of these technologies it is important that the user have knowledge of the algorithmic logic allowing them to go beyond the basic functions inherent to each machine. The activity documented in this article intend to make the algorithmic logic accessible to a lay public insofar as the participant can identify similarities between the programming language and the development stages of the millennial technique of the paper fold.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_011
id ecaade2017_011
authors Haeusler, M. Hank, Asher, Rob and Booth, Lucy
year 2017
title Urban Pinboard - Development of a platform to access open source data to optimise urban planning performance
doi https://doi.org/10.52842/conf.ecaade.2017.1.439
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 439-448
summary In this paper we present our research to design and develop 'Urban Pinboard', a platform to optimise urban planning process and performance. We argue that second machine age general purpose technologies can now be accessed for city modelling. Based on the observation that: GIS does offer a depository that can display urban data; data sets exist but often stored at different locations; there is a discrepancy of access to planning information; and the data often are not accessible to private / public sector and the general public on one location, Urban Pinboard aims to address these problems as an integrated digital platform that enables the public, private and community sectors to connect by contributing ideas, comments and proposals on all planning issues in a single platform. The paper outlines the background research, methodology and introduces the Urban Pinboard's features to create a single source of truth for planning data.
keywords Software development; web-based GIS platform; Urban Planning; planning data
series eCAADe
email
last changed 2022/06/07 07:49

_id cf2017_297
id cf2017_297
authors He, Yi; Schnabel, Marc Aurel; Chen, Rong; Wang, Ning
year 2017
title A Comprehensive Application of BIM Modelling for Semi-underground Public Architecture: A Study for Tiantian Square Complex, Wuhan, China
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 297-308.
summary The paper presents research on how Building Information Modelling (BIM) can be applied comprehensively throughout the design of an architectural project. A practical method based on BIM models that help to deal with multidisciplinary issues by integrating the design information from different sources, collaborators and project stages is formulated by adopting existing available tools. The ‘Tiantian Square’ building project in Wuhan, China combines a subway station with a commercial hug. According to the project’s size and complexity, our study focuses on the multiple cooperation of professionals from different backgrounds, including the departments of architectural design, structure (civil engineering), HVAC (Heating, Ventilation and Air Conditioning), water supply and drainage, and electrics and sustainable design. Our paper presents how the BIM model bridges between various simulation platforms through our technical system and management, including steps of transformation, simplification, analysis, reaction and improvement. Our research has helped to improve the overall efficiency and quality of the project. We generated a successful analysis-design approach for the initial design stages, which does not require in-depth analysis. It is a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Finally, we discuss how the coordination of different department becomes a crucial factor as we look forward to a more open, communicative and inter-relational design and development process.
keywords BIM, Subway Complex, Simulation, Semi-Underground Architecture
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_502
id acadia17_502
authors Rosenwasser, David; Mantell, Sonya; Sabin, Jenny
year 2017
title Clay Non-Wovens: Robotic Fabrication and Digital Ceramics
doi https://doi.org/10.52842/conf.acadia.2017.502
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 502- 511
summary Clay Non-Wovens develops a new approach for robotic fabrication, applying traditional craft methods and materials to a fundamentally technical and precise fabrication methodology. This paper includes new explorations in robotic fabrication, additive manufacturing, complex patterning, and techniques bound in the arts and crafts. Clay Non-Wovens seeks to develop a system of porous cladding panels that negotiate circumstances of natural daylighting through parameters dealing with textile (woven and non-woven) patterning and line typologies. While additive manufacturing has been built predominantly on the basis of extrusion, technological developments in the field of 3D printing seldom acknowledge the bead or line of such extrusions as more than a nuisance. Blurring of recognizable layers is often seen as progress, but it does away with visible traces of a fabrication process. Historically, however, construction methods in architecture and the building industry have celebrated traces of making ranging from stone cutting to log construction. With growing interest in digital craft within the fields of architecture and design, we seek to reconcile our relationship with the extruded bead and reinterpret it as a fiber and three-dimensional drawing tool. The traditional clay coil is to be reconsidered as a structural fiber rather than a tool for solid construction. Building upon this body of robotically fabricated clay structures required the development of three distinct but connected techniques: 1. construction of a simple end effector for extrusion; 2. development of a clay body and; 3. using computational design tools to develop formwork and toolpath geometries.
keywords design methods; information processing; fabrication; digital craft; manual craft; prototyping
series ACADIA
email
last changed 2022/06/07 07:56

_id sigradi2017_043
id sigradi2017_043
authors Griz, Cristiana; Natália Queiroz, Carlos Nome
year 2017
title Edificação Modular: Estudo de caso e protótipo de um sistema construtivo de código aberto utilizando prototipagem rápida [Modular Building: Case study and prototype of an open source modular system using rapid prototyping]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.293-300
summary This paper presents the research development for a base structural module for the Casa Nordeste project. Casa Nordeste is a compact housing experiment that will participate in the Solar Decathlon Latin America competition. It consists of a modular building that houses living, cooking, and sanitizing space. Developments presented are based on digital design and fabrication principles and processes, through algorithms that allow its customization. In this sense, discussions begin with a brief theoretical discussion about the concepts that underline the project: evolutionary housing; digital technologies that improve design and construction; open source construction and generative design systems. The paper finalizes by presenting and discussing developments of three different design aspects of the structural module: (a) geometry of the frames, (b) its modulation, and (c) fittings and joining mechanisms.
keywords Digital fabrication; Rapid prototyping; Visual programming; Compact housing.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_222
id acadia17_222
authors Dierichs, Karola; Wood, Dylan; Correa, David; Menges, Achim
year 2017
title Smart Granular Materials: Prototypes for Hygroscopically Actuated Shape-Changing Particles
doi https://doi.org/10.52842/conf.acadia.2017.222
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 222-231
summary Hygroscopically Actuated Granular Materials are a new class of designed granular materials in architecture. Granular materials are large numbers of particles that are only in loose contact with each other. If the individual particle in such a granular material is defined in its geometry and material make-up, one can speak of a designed granular material. In recent years these designed granular materials have been explored as architectural construction systems. Since the particles are not bound to each other, granular materials are rapidly reconfigurable and recyclable. Yet one of the biggest assets of designed granular materials is the fact that their overall behavior can be designed by altering the geometry or material make-up of the individual composing particles. Up until now mainly non-actuated granular materials have been investigated. These are designed granular materials in which the geometry of the particle stays the same over time. The proposed Hygroscopically Actuated Granular Materials are systems consisting of time-variable particle geometries. Their potential lies in the fact that one and the same granular system can be designed to display different mechanical behaviors over the course of time. The research presented here encompasses three case studies, which complement each other both with regard to the development of the particle system and the applied construction processes. All three cases are described both with regard to the methods used and the eventual outcome aiming at a potential design system for Hygroscopically Actuated Granular Materials. To conclude, these results are compared and directions of further research are indicated.
keywords material and construction; smart materials; smart assembly/construction
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_044
id ecaade2017_044
authors Fernando, Shayani, Reinhardt, Dagmar and Weir, Simon
year 2017
title Simulating Self Supporting Structures - A Comparison study of Interlocking Wave Jointed Geometry using Finite Element and Physical Modelling Methods
doi https://doi.org/10.52842/conf.ecaade.2017.2.177
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 177-184
summary Self-supporting modular block systems of stone or masonry architecture are amongst ancient building techniques that survived unchanged for centuries. The control over geometry and structural performance of arches, domes and vaults continues to be exemplary and structural integrity is analysed through analogue and virtual simulation methods. With the advancement of computational tools and software development, finite and discrete element modeling have become efficient practices for analysing aspects for economy, tolerances and safety of stone masonry structures. This paper compares methods of structural simulation and analysis of an arch based on an interlocking wave joint assembly. As an extension of standard planar brick or stone modules, two specific geometry variations of catenary and sinusoidal curvature are investigated and simulated in a comparison of physical compression tests and finite element analysis methods. This is in order to test the stress performance and resilience provided by three-dimensional joints respectively through their capacity to resist vertical compression, as well as torsion and shear forces. The research reports on the threshold for maximum sinusoidal curvature evidenced by structural failure in physical modelling methods and finite element analysis.
keywords Mortar-less; Interlocking; Structures; Finite Element Modelling; Models
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_053
id ecaade2017_053
authors Gül, Leman Figen
year 2017
title Studying Architectural Massing Strategies in Co-design - Mobile Augmented Reality Tool versus 3D Virtual World
doi https://doi.org/10.52842/conf.ecaade.2017.2.703
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 703-710
summary Researchers attempt to offer new design tools and technologies to support design process facilitating alternative visualization and representation techniques. This paper describes a comparison study that took place in the Department of Architecture, at the Istanbul Technical University between 2016-2017. We compare when architects designed mass volumes of buildings in an marker-based mobile Augmented Reality (AR) application with that of when they used a collaborative 3D Virtual World. The massing strategy in the AR environment was an additive approach that is to collaboratively design the small parts to make the whole. Alignment and arrangement of the parts were not the main concerns of the designers in AR, instead the functional development of the design proposal, bodily engagements with the design representation, framing and re-framing of the given context and parameters become the discussion topics.
keywords Augmented reality, virtual world, massing strategies; protocol analysis
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2017_027
id caadria2017_027
authors Johanson, Madeleine, Khan, Nazmul, Asher, Rob, Butler, Andrew and Haeusler, M. Hank
year 2017
title Urban Pinboard - Establishing a Bi-directional Workflow Between Web-based Platforms and Computational Tools
doi https://doi.org/10.52842/conf.caadria.2017.715
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 715-724
summary Architecture is heading towards a future where data is collected, collated and presented in a dynamic platform. There is a potential for many standard processes in the industry to become automated, such as the site analysis process. Streamlining aspects of the design process allows architects to pay greater attention on creative design solutions for their buildings and less time engaging in complex, time consuming analytical programs. Urban Pinboard, a web-based GIS platform, promises to establish a bi-directional workflow between web data depositories and computational tools through the medium of a website. By doing so, the website allows users with minimal experience in computational processes to be engaged in the utilisation of these large datasets. Through the automation of these processes, relationships within the built environment industry can excel, leading towards performative driven designs.
keywords Urban Planning; Computational Urbanism; Data-driven Design; New Workflow Models; Software Development.
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2017_092
id sigradi2017_092
authors Larqué, Hugo; Barbara Marin, Juan Camilo Silva
year 2017
title BioRizom. Host Biotransducer based in mycotic rhizome [BioRizom. Host Biotransducer based in mycotic rhizome]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.640-643
summary The growth of urban settlements is a phenomenon on the rise. It is expected that more than 70% of the people will live in urban settlements by 2050. To be able to tackle and embrace this growth, we need alternative tools that help us to face these challenges. On this framework, this proposal aims to raise the paradigm of how the information can be gathered and used to equilibrate urban systems in terms of planning concerning the distribution of resources. To achieve this goal, the exchange of data through an organic system of biochemical interaction network is proposed.
keywords Smart City; Urban planning; Social Development; Bio-sensor; Internet of Things.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_366
id acadia17_366
authors Lin, Yuming; Huang, Weixin
year 2017
title Behavior Analysis and Individual Labeling Using Data from Wi-Fi IPS
doi https://doi.org/10.52842/conf.acadia.2017.366
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 366- 373
summary It is fairly important for architects and urban designers to understand how different people interact with the environment. However, traditional investigation methods for studying environmental behavior are quite limited in their coverage of samples and regions, which are not sufficient to delve into the behavioral differences of people. Only recently, the development of indoor positioning systems (IPS) and data-mining techniques has made it possible to collect full-time, full-coverage data for behavioral difference research and individualized identification. In our research, the Wi-Fi IPS system is chosen among the various IPS systems as the data source due to its extensive applicability and acceptable cost. In this paper, we analyzed a 60-day anonymized dataset from a ski resort, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. Combining this with mobile phone data and questionnaires, we revealed some interesting characteristics of tourists from different origins through spatial-temporal behavioral data, and further conducted individual labeling through supervised learning. Through this case study, temporal-spatial behavioral data from an IPS system exhibited great potential in revealing individual characteristics besides exploring group differences, shedding light on the prospect of architectural space personalization.
keywords design methods; information processing; data mining; big data
series ACADIA
email
last changed 2022/06/07 07:59

_id ecaade2017_067
id ecaade2017_067
authors Liu, Chenjun, Wang, Tsung-Hsien, Meagher, Mark and Peng, Chengzhi
year 2017
title Feather-inspired social media data processing for generating developable surfaces: Prototyping an affective architecture - Prototyping an affective architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.181
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 181-190
summary This paper presents the development of an interactive installation intended as a prototype of experimental affective architecture connected with social media data processing. Social moods and emotions are now spread more widely and faster than ever before due to pervasive uses of social media platforms. We explore how data processing of users' expressions and sharing of moods/emotions through social media can become a source of influences on shaping the form and behaviour of interactive architecture. The interactive prototyping method includes (1) a feather-inspired data-to-shape rule system together with the ShapeOp Library for generating strips as developable surfaces, (2) a physical computing platform built with Arduino micro-processor and shape memory alloy springs for actuation, and (3) physical model-making. As a prototype of social media aware affective architecture, an interactive installation design is proposed for a campus space where the actuation of the strip installation is linked to data processing of Twitter messages collated from users on campus. We reflect on the prototyping methodology and the implications of an architecture affected by people's expression of moods/emotions through social media.
keywords social media data processing; developable surfaces; interactive prototyping; shape memory alloy; elastic morphing; ShapeOp
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2017_185
id caadria2017_185
authors McGinley, Tim, Abroe, Brett, Kroll, David, Murphy, Matt, Sare, Tessa and Gu, Ning
year 2017
title Agile X UniSA Pavilion: Agile Principles and the Parametric Paradox
doi https://doi.org/10.52842/conf.caadria.2017.169
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 169-178
summary The world is experiencing an ever increasing pace of change and yet our design processes typically follow a waterfall model that make can make change and adaptation difficult. Digital design approaches provide an opportunity to develop agile solutions that are more open to change in the design process. This paper proposes the development of immaterial architectures wherein the material expression is left to later in the design process when there is greater certainty. We describe a series of 3 workshops that employ aspects of agile software development methodologies into architecture. The workshops proposed 3 immaterial pavilions for Delft, Adelaide and Tianjin. This first cycle of three workshops resulted in the design, fabrication and installation of the Agile X UniSA Pavilion in Adelaide. This paper discusses the applicability of agile development methodologies to this process and details a series of adaptations to provide a set of appropriate agile development principles for architecture.
keywords Agile; Architecture pavilion; Immaterial architecture; Parametric paradox; Collaboration
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2017_058
id caadria2017_058
authors Miao, Yufan, Koenig, Reinhard, Buš, Peter, Chang, Mei-Chih, Chirkin, Artem and Treyer, Lukas
year 2017
title Empowering Urban Design Prototyping   - A Case Study in Cape Town with Interactive Computational Synthesis Methods 
doi https://doi.org/10.52842/conf.caadria.2017.407
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 407-416
summary Although Cape Town city in South Africa is generally regarded as the most stable and prosperous city in the region, there are still approximately 7.5 million people living in informal settlements and about 2.5 million housing units are needed. This motivates the so-called Empower Shack project, aiming to develop upgrading strategies for these informal settlements. To facilitate the fulfillment of this project, urban design prototyping tools are researched and developed with the capabilities for fast urban design synthesis. In this paper we present a computational method for fast interactive synthesis of urban planning prototypes. For the generation of mock-up urban layouts, one hierarchical slicing structure, namely, the slicing tree is introduced to abstractly represent the parcels, as an extension of the existing generative method for street network. It has been proved that our methods can interactively assist the urban planning process in practice. However, the slicing tree data structure has several limitations that hinder the further improvement of the generated urban layouts. In the future, the development of a new data structure is required to fulfill urban synthesis for urban layout generation with Evolutionary Multi-objective Optimization methods and evaluation strategies should be developed to verify the generated results.
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2017_033
id caadria2017_033
authors Qu, Tengteng, Zang, Wei, Peng, Zhenwei, Liu, Jun, Li, Weiwei, Zhu, Yun, Zhang, Bin and Wang, Yongsheng
year 2017
title Construction Site Monitoring Using UAV Oblique Photogrammetry and BIM Technologies
doi https://doi.org/10.52842/conf.caadria.2017.655
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 655-662
summary Traditional construction site monitoring primarily relies on a human presence. Automated construction progress monitoring is expected to make this process much more efficient and precise. The planned state of construction (as-planned) must be validated by the actual state (as-built) during automated construction progress monitoring. This research uses an integrated application of high-resolution low-altitude UAV (Unmanned Aerial Vehicle) oblique photogrammetry and Building Information Modeling (BIM) technologies for construction site management. A case study was carried out for a renewable energy development program in the JiaDing District of Shanghai, China. A high-resolution 3D model of the construction site acquired by our multi-motor UAV provides data to illustrate the as-built state of the construction program. Comparison of the UAV-based 3D model (as-built) with the BIM-based 3D model (as-planned) for a specific chimney was used for dynamic construction site monitoring. Our results show 3D illustrations of construction progress. This research demonstrates that the BIM technology in conjunction with the use of UAV photogrammetry provides efficient and precise as-built data collection and illustration of construction progress.
keywords Oblique Photogrammetry; UAV; 3D modeling; BIM; construction site monitoring
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2017_000
id sigradi2017_000
authors Roco Ibaceta, Miguel
year 2017
title Resilience Design
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017
summary The chosen theme, Resilience Design, evidences the researchers’ concern about issues related to our reality of climate change and natural disasters, associated with the states of vulnerability and risk, having wide effects on society and the way we inhabit territories. These matters are fundamental and highly relevant for the disciplines and in the fields of design and architecture, as they are also important for collaborative work with areas emerging from the arts and human sciences. Thinking about Resilience Design is to set ourselves on new scenarios of reflection and action which, supported by transdisciplinary thinking and collaborative design, allow us to develop a new approach towards our territories and their demands, one that is more contextualized and adjusted to their current and future requirements, a starting point to establish the key elements to drive change in our cities and society. In this sense, technology and digital development, parametric design, the use of Information and Communication Technologies (ICT) and Geographic Information Systems (GIS), in addition to work done with Building Information Modelling (BIM), among many others, have been delivering an enormous amount of tools and possibilities of interaction with living in society, leading to a substantive change in the way of understanding and relating to the built environment and the territories where buildings are sit. This demands a strong commitment to Social Responsibility from our disciplines, besides the necessary landing of cutting-edge technological and digital research and development onto our diverse realities, in order for them to be put at the service of communities in vulnerable environments or with a marked condition of risk, which are subject to constant processes of resilience. Working on Resilience Design allows to support research and productive processes, plus the appearance of new technologies in interdisciplinary contexts, which greatest value is to impact the processes of teaching and professional practice in the different areas related to human habitation. The new professionals will have to take action and immerse themselves into these new scenarios of change and constant adjustment.
series SIGRADI
email
last changed 2021/03/28 19:59

_id cf2017_414
id cf2017_414
authors Shireen, Naghmi; Erhan, Halil; Woodbury, Robert; Wang, Ivy
year 2017
title Making Sense of Design Space: What Designers do with Large Numbers of Alternatives?
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 414.
summary Today’s generative design tools and large screen displays present opportunities for designers to explore large number of design alternatives. Besides numerous studies in design, the act of exploring design space is yet to be integrated in the design of new digital media. To understand how designer’s search patterns will uncover when provided with a gallery of large numbers of design solutions, we conducted a lab experiment with nine designers. Particularly the study explored how designers used spatial structuring of their work environment to make informed design decisions. The results of the study present intuitions for development of next generation front-end gallery interfaces for managing a large set of design variations while enabling simultaneous editing of design parameters.
keywords Parametric design, Alternatives, Design space exploration, New interfaces, New media, Protocol analysis, User study
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_156
id ecaade2017_156
authors Tunçer, Bige and You, Linlin
year 2017
title Informed Design Platform - Multi-modal Data to Support Urban Design Decision Making
doi https://doi.org/10.52842/conf.ecaade.2017.2.545
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 545-552
summary Evidence based urban design and planning support benefits from providing designers with multi-source, multi-scale and multi-time information, which is both 'big' and 'small', and quantitative and qualitative. We are developing a platform, namely Informed Design Platform, that adopts a (big) data driven approach to derive insights and principles in order to adaptively design or re-design various forms of urban public spaces based on usage patterns and perceptions of the public. This platform is designed using a four step methodology of data collection, integration, analysis, and visualization. Multi-source data is integrated based on three analysis dimensions: place, time and people; and four analysis pillars: utilization, activity, opinion and sensing. This paper describes the aims, the design principles, and partial results of development of this platform.
keywords Evidence based urban design; Multi-modal data; Information modeling; Information visualization
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2017_075
id sigradi2017_075
authors Vilhena, Maria Laura; Ana Paula Baltazar, Ana Paula Pitzer, Camila Oddi Duran, Larissa Reis, Maria Cecília Rocha, Marllon Morais
year 2017
title Tecnologias digitais para tornar visíveis informações sócio-espaciais [Digital technologies to make socio-spatial information visible]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.513-518
summary This paper discusses the association of SPSS, combined to Google Forms, and GEPHI in the context of a socio-spatial data collection in Glaura (a district of Ouro Preto/MG – Brazil), for the development of a technical advisory method using interfaces. It also describes the steps of using these softwares, their potentials, the difficulties found throughout the process, and the qualitative analysis based on the graphic and tabular results of the data. The main goal is to make visible complex information about the socio-spatial relations within the community to further use it to inform the conception of interfaces.
series SIGRADI
email
last changed 2021/03/28 19:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_640020 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002