CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 476

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia17_552
id acadia17_552
authors Sjoberg, Christian; Beorkrem, Christopher; Ellinger, Jefferson
year 2017
title Emergent Syntax: Machine Learning for the Curation of Design Solution Space
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 552- 561
doi https://doi.org/10.52842/conf.acadia.2017.552
summary The expanding role of computational models in the process of design is producing exponential growth in parameter spaces. As designers, we must create and implement new methods for searching these parameter spaces, considering not only quantitative optimization metrics but also qualitative features. This paper proposes a methodology that leverages the pattern modeling properties of artificial neural networks to capture designers' inexplicit selection criteria and create user-selection-based fitness functions for a genetic solver. Through emulation of learned selection patterns, fitness functions based on trained networks provide a method for qualitative evaluation of designs in the context of a given population. The application of genetic solvers for the generation of new populations based on the trained network selections creates emergent high-density clusters in the parameter space, allowing for the identification of solutions that satisfy the designer’s inexplicit criteria. The results of an initial user study show that even with small numbers of training objects, a search tool with this configuration can begin to emulate the design criteria of the user who trained it.
keywords design methods; information processing; AI; machine learning; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
doi https://doi.org/10.52842/conf.acadia.2019.392
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id cf2017_546
id cf2017_546
authors Hysa, Desantila; Özkar, Mine
year 2017
title Meno in the Studio: Design Computation in a Pedagogical Dialogue
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 546-562.
summary Competence in learning comprises combinations of knowledge, skills, and attitudes. Yet it is difficult to articulate and assess the learning objectives for attitudes. This paper focuses on the role of computation in providing an instrumental medium for attitude development and assessment in the design learning settings of the future. Our study draws from a passage on a mathematical inquiry in Plato’s Meno and makes a case of its aspects of visual reasoning and learning as reflection in action. Reporting on attitudes observed in an inquiry conducted with similar role play with foundational design students, we show that analog computation with visual rules supports the externalization of mental processes in basic design exercises and endorses beginning practices of accountable designing.
keywords Attitudes, Foundation Studio, Shape Rules
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
doi https://doi.org/10.52842/conf.caadria.2018.2.165
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2017_026
id sigradi2017_026
authors Martini, Sebastián; Mauro Chiarella
year 2017
title Didactica Maker. Estrategias colaborativas de aprendizaje STEM en Diseño Industrial. [Makers Didactics. STEM Learning collaborative strategies in Industrial Design.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.186-192
summary In this presentation will be exposed a work of verification of the research carried out for the Master's degree in University Teaching about the implications of Maker Culture in the teaching-learning processes into Industrial Design. From this exploration, we are interested in proposing an exercise for the subject IMD-DI, that develop an action process where it is possible catalyze the educational advantages of Maker Culture, STEAM education and the disciplinary transversality within a strategy on problem-based learning as a way of approach and knowledge generation.
keywords Maker culture; Makerspace; STEM; PBL; Collaborative working
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_426
id acadia17_426
authors Moorman, Andrew
year 2017
title Pattern Making and Learning: Non-Routine Practices in Generative Design
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 426- 435
doi https://doi.org/10.52842/conf.acadia.2017.426
summary We now witness an upsurge in mainstream generative design tools fortified by simulation that speed up the concealed linear synthesis of optimized design alternatives. In pursuit of optimality, these tools saturate local machines or cloud servers with analysis and design iteration data, only to discard it once the procedure has concluded. Largely absent, however, are tools for an active, adaptive relationship with design exploration and the reuse of corresponding design data and metadata. In Pattern Making and Pattern Learning, we propose that these characteristics are mutually beneficial. This paper presents a series of revisions to the optimization framework for routine design synthesis that examine a potential symbiosis between the production of large datasets (big data) and non-routine practices of making in design. Our engagement with iterative design exercises is twofold: as a supply of computer-generated design information to foster user intuition and explore the design space on non-objective terms, and as a supply of human-generated design information to learn artifacts of user preference in the interest of design software personalization. These concepts are applied to the generation of functionally graded patterning in chair design, combining methods of physical production with programmable sheet material behavior through a custom interactive synthesis framework.
keywords design methods; information processing; ai & machine learning; simulation & optimization; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_271
id ecaade2017_271
authors Narahara, Taro
year 2017
title Collective Construction Modeling and Machine Learning: Potential for Architectural Design
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 341-348
doi https://doi.org/10.52842/conf.ecaade.2017.2.341
summary Recently, there are significant developments in artificial intelligence using advanced machine learning algorithms such as deep neural networks. These new methods can defeat human expert players in strategy-based board games such as Go and video games such as Breakout. This paper suggests a way to incorporate such advanced computing methods into architectural design through introducing a simple conceptual design project inspired by computational interpretations of wasps' collective constructions. At this stage, the paper's intent is not to introduce a practical and fully finished tool directly useful for architectural design. Instead, the paper proposes an example of a program that can potentially become a conceptual framework for incorporating such advanced methods into architectural design.
keywords Design tools; Stigmergy; Machine learning
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_474
id acadia17_474
authors Peng, Wenzhe; Zhang, Fan; Nagakura, Takehiko
year 2017
title Machines’ Perception of Space: Employing 3D Isovist Methods and a Convolutional Neural Network in Architectural Space Classification
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 474- 481
doi https://doi.org/10.52842/conf.acadia.2017.474
summary Simple and common architectural elements can be combined to create complex spaces. Different spatial compositions of elements define different spatial boundaries, and each produces a unique local spatial experience to observers inside the space. Therefore an architectural style brings about a distinct spatial experience. While multiple representation methods are practiced in the field of architecture, there lacks a compelling way to capture and identify spatial experiences. Describing an observer’s spatial experiences quantitatively and efficiently is a challenge. In this paper, we propose a method that employs 3D isovist methods and a convolutional neural network (CNN) to achieve recognition of local spatial compositions. The case studies conducted validate that this methodology works well in capturing and identifying local spatial conditions, illustrates the pattern and frequency of their appearance in designs, and indicates peculiar spatial experiences embedded in an architectural style. The case study used small designs by Mies van der Rohe and Aldo van Eyck. The contribution of this paper is threefold. First, it introduces a sampling method based on 3D Isovist that generates a 2D image that can be used to represent a 3D space from a specific observation point. Second, it employs a CNN model to extract features from the sampled images, then classifies their corresponding space. Third, it demonstrates a few case studies where this space classification method is applied to different architectural styles.
keywords design methods; information processing; AI; machine learning; computer vision; representation
series ACADIA
email
last changed 2022/06/07 08:00

_id ecaade2017_269
id ecaade2017_269
authors Rahmani Asl, Mohammad, Das, Subhajit, Tsai, Barry, Molloy, Ian and Hauck, Anthony
year 2017
title Energy Model Machine (EMM) - Instant Building Energy Prediction using Machine Learning
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 277-286
doi https://doi.org/10.52842/conf.ecaade.2017.2.277
summary In the process of building design, energy performance is often simulated using physical principles of thermodynamics and energy behaviour using elaborate simulation tools. However, energy simulation is computationally expensive and time consuming process. These drawbacks limit opportunities for design space exploration and prevent interactive design which results in environmentally inefficient buildings. In this paper we propose Energy Model Machine (EMM) as a general and flexible approximation model for instant energy performance prediction using machine learning (ML) algorithms to facilitate design space exploration in building design process. EMM can easily be added to design tools and provide instant feedback for real-time design iterations. To demonstrate its applicability, EMM is used to estimate energy performance of a medium size office building during the design space exploration in widely used parametrically design tool as a case study. The results of this study support the feasibility of using machine learning approaches to estimate energy performance for design exploration and optimization workflows to achieve high performance buildings.
keywords Machine Learning; Artificial Neural Networks; Boosted Decision Tree; Building Energy Performance; Parametric Modeling and Design; Building Performance Optimization
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2017_123
id caadria2017_123
authors Raonic, Aleksandra and Raonic, Milos
year 2017
title Digital Tools, Analogue Minds - A Project-based Framework for Understanding the Dialogue In-between
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 561-570
doi https://doi.org/10.52842/conf.caadria.2017.561
summary This paper is situated in a specific research by design setting, where the realised work of architecture has been generated with digital tools operated by analogue minds of designers. It examines the relation- ship between the two entities, the designer and the tools, in an attempt to understand their specific roles better, trusting that this can lead to anew ways of enhancing the design process. Through revisiting the processes, methods, techniques and tools employed within various design-cycles of the project, authors present their own /designerly/ experience, pointing to both the potentials and limitations of the digital tools used. The attention is drawn to the importance for a human designer to have a critical awareness of the true nature of the computational systems and the capacity of both to adapt to the given context, in order to be able to embrace them and use to their full potentials.
keywords project-based learning; design exploration; digital tools; design cognition; low-cost conditions
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2017_009
id ecaade2017_009
authors Takizawa, Atsushi and Furuta, Airi
year 2017
title 3D Spatial Analysis Method with First-Person Viewpoint by Deep Convolutional Neural Network with Omnidirectional RGB and Depth Images
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 693-702
doi https://doi.org/10.52842/conf.ecaade.2017.2.693
summary The fields of architecture and urban planning widely apply spatial analysis based on images. However, many features can influence the spatial conditions, not all of which can be explicitly defined. In this research, we propose a new deep learning framework for extracting spatial features without explicitly specifying them and use these features for spatial analysis and prediction. As a first step, we establish a deep convolution neural network (DCNN) learning problem with omnidirectional images that include depth images as well as ordinary RGB images. We then use these images as explanatory variables in a game engine to predict a subjects' preference regarding a virtual urban space. DCNNs learn the relationship between the evaluation result and the omnidirectional camera images and we confirm the prediction accuracy of the verification data.
keywords Space evaluation; deep convolutional neural network; omnidirectional image; depth image; Unity; virtual reality
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2017_105
id caadria2017_105
authors Janssen, Patrick
year 2017
title Evolutionary Urbanism - Exploring Form-based Codes Using Neuroevolution Algorithms
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 303-312
doi https://doi.org/10.52842/conf.caadria.2017.303
summary Form-Based Codes are legal regulations adopted by local government that allow specific urban forms to be achieved. Such codes have a significant impact on the performative potential of the urban environment. This paper explores the possibility of using a neuroevolution algorithm to elucidate the complex relationship between Form-based Codes and their performative potential. More specifically, Compositional Pattern Producing Networks (CPPN) are used to generate parameter fields, which then drive the generation of varied urban models. For evolving the CPPN networks, a neuroevolution algorithm is used, called Neuroevolution of Augmenting Topologies (NEAT). In order to test the feasibility of the proposed approach, an abstract experiment is described in which a population of urban models are evolved, optimising a set of performance criteria related to the vista and location of the residential units.
keywords Form-based codes; evolutionary design; neural networks; neuroevolution; urban planning
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_92
id acadia17_92
authors Anzalone, Phillip; Bayard, Stephanie; Steenblik, Ralph S.
year 2017
title Rapidly Deployed and Assembled Tensegrity System: An Augmented Design Approach
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 92-101
doi https://doi.org/10.52842/conf.acadia.2017.092
summary The Rapidly Deployable and Assembled Tensegrity (RDAT) project enables the efficient automated design and deployment of differential-geometry tensegrity structures through computation-driven design-to-installation workflow. RDAT employs the integration of parametric and solid-modeling methods with production by streamlining computer numerically controlled manufacturing through novel detailing and production techniques to develop an efficient manufacturing and assembly system. The RDAT project emerges from the Authors' research in academia and professional practice focusing on computationally produced full-scale performative building systems and their innovative uses in the building and construction industry.
keywords design methods; information processing; AI; machine learning; form finding; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_069
id sigradi2017_069
authors Briones Lazo, Carolina; Carolina Soto Ogueta
year 2017
title La enseñanza de BIM en Chile, el desafío de un cambio de enfoque centrado en la metodología por sobre la tecnología. [BIM education in Chile, the challenge of a shift of focus centered on methodology over technology.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.470-478
summary This article presents the level of adoption of BIM in Chile referring to recent studies carried out in the country, demonstrating that there has not been a significant increase in the use of this methodology by the industry. According to the analysis of international cases on educational frameworks, the authors argue that the development of a national education strategy for BIM with a focus on defining BIM capabilities required to assume the national mandate 2020, along with promoting collaborative work environments and active learning methodologies would be very beneficial.
keywords Building Information Modelling; Metodología BIM; Adopción de BIM; Estrategia de enseñanza de BIM.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
doi https://doi.org/10.52842/conf.acadia.2017.164
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2017.685
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_703411 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002