CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 569

_id acadia17_62
id acadia17_62
authors Al-Assaf, Nancy S.; Clayton, Mark J.
year 2017
title Representing the Aesthetics of Richard Meier’s Houses Using Building Information Modeling
doi https://doi.org/10.52842/conf.acadia.2017.062
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 62-71
summary Beyond its widespread use for representing technical aspects and matters of building and construction science, Building information modeling (BIM) can be used to represent architectural relationships and rules drawn from aesthetic theory. This research suggests that BIM provides not only vocabulary but also syntactical tools that can be used to capture an architectural language. In a case study using Richard Meier’s language for single-family detached houses, a BIM template has been devised to represent the aesthetic concepts and relations therein. The template employs parameterized conceptual mass objects, syntactical rules, and a library of architectonic elements, such as walls, roofs, columns, windows, doors, and railings. It constrains any design produced using the template to a grammatically consistent expression or style. The template has been used as the starting point for modeling the Smith House, the Douglas House, and others created by the authors, demonstrating that the aesthetic template is general to many variations. Designing with the template to produce a unique but conforming design further illustrates the generality and expressiveness of the language. Having made the formal language explicit, in terms of syntactical rules and vocabulary, it becomes easier to vary the formal grammar and concrete vocabulary to produce variant languages and styles. Accordingly, this approach is not limited to a specific style, such as Richard Meier's. Future research can be conducted to demonstrate how designing with BIM can support stylistic change. Adoption of this approach in practice could improve the consistency of architectural designs and their coherence to defined styles, potentially increasing the general level of aesthetic expression in our built environment.
keywords design methods; information processing; BIM; education
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_309
id ecaade2017_309
authors Lo Turco, Massimiliano, Zich, Ursula, Astolfi, Arianna, Shtrepi, Louena and Botto Poaola, Matteo
year 2017
title From digital design to physical model - Origami techniques applied to dynamic paneling shapes for acoustic performance control
doi https://doi.org/10.52842/conf.ecaade.2017.2.077
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 77-86
summary The recent trend toward non-standard and free form architecture has generated a lot of debate among the Scientific Community. The reasons can be found in the renewed interest in organic shapes, in addition to recent and powerful capabilities of parametric platforms. In this regard, the Visual Programming Language (VPL) interface gives a high level of freedom and control for conceiving complex shapes. The geometric problems in identifying a suitable shape have been addressed by relying on the study of Origami. The control of variable geometry has required the use of algorithmic models that ensure fast changes and free control of the model, besides a physical one made of rigid cardboard to simulate its rigid-foldability. The aim is to present a prototype of an adaptive structure, with an acoustic application, to control sound quality and perception in spaces where this has a central role, such as theatres or concert halls.
keywords parametric modeling; generative design; shape and form studies; acoustics conditions; digital Representation
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_407
id ecaadesigradi2019_407
authors Capone, Mara, Lanzara, Emanuela, Marsillo, Laura and Nome Silva, Carlos Alejandro
year 2019
title Responsive complex surfaces manufacturing using origami
doi https://doi.org/10.52842/conf.ecaade.2019.2.715
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 715-724
summary Contemporary architecture is considered a dynamic system, capable of adapting to different needs, from environmental to functional ones. The term 'Adaptable Architecture' describes an architecture from which specific components can be changed in relation to external stimuli. This change could be executed by the building system itself, transformed manually or it could be any other ability to be transformed by external forces (Leliveld et al.2017). Adaptability concept is therefore linked to motion and to recent advances in kinetic architecture. In our research we are studying the rules that we can use to design a kinetic architecture using origami. Parametric design allows us to digitally simulate the movement of origami structures, we are testing algorithmic modeling to generate doubly curvature surfaces starting from a designed surface and not from the process. Our main goal is to study the relationship between geometry, motion and shape. We are interested, in particular, in complex surface manufacture using origami technique to design a kinetic and reactive ceiling.
keywords Origami; complex surface manufacture; responsive architecture; Applied Geometry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
doi https://doi.org/10.52842/conf.caadria.2017.685
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2017_101
id cf2017_101
authors Chen, Nai Chun; Zhang, Yan; Stephens, Marrisa; Nagakura, Takehiko; Larson, Kent
year 2017
title Urban Data Mining with Natural Language Processing: Social Media as Complementary Tool for Urban Decision Making
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 101-109.
summary The presence of web2.0 and traceable mobile devices creates new opportunities for urban designers to understand cities through an analysis of user-generated data. The emergence of “big data” has resulted in a large amount of information documenting daily events, perceptions, thoughts, and emotions of citizens, all annotated with the location and time that they were recorded. This data presents an unprecedented opportunity to gauge public opinion about the topic of interest. Natural language processing with social media is a novel tool complementary to traditional survey methods. In this paper, we validate these methods using tourism data from Trip-Advisor in Andorra. “Natural language processing” (NLP) detects patterns within written languages, enabling researchers to infer sentiment by parsing sentences from social media. We applied sentiment analysis to reviews of tourist attractions and restaurants. We found that there were distinct geographic regions in Andorra where amenities were reviewed as either uniformly positive or negative. For example, correlating negative reviews of parking availability with land use data revealed a shortage of parking associated with a known traffic congestion issue, validating our methods. We believe that the application of NLP to social media data can be a complementary tool for urban decision making.
keywords Short Paper, Urban Design Decision Making, Social Media, Natural Language Processing
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_157
id ecaade2017_157
authors Date, Kartikeya, Schaumann, Davide and Kalay, Yehuda E.
year 2017
title A Parametric Approach To Simulating Use-Patterns in Buildings - The Case Of Movement
doi https://doi.org/10.52842/conf.ecaade.2017.2.503
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 503-510
summary We describe one of the three core use-pattern building blocks of a parametric approach to simulating use-patterns in buildings. Use-patterns are modeled as events which use specified descriptions of spaces, actors and activities which constitute them. The simulation system relies on three fundamental patterns of use - move, meet and do. The move pattern is considered in detail in this paper with specific reference to what we term the partial knowledge issue. Modeling decision making about how to move through the space (what path to take) depends on modeling the actor's partial access to knowledge. Visibility is used as an example of partial knowledge. The parametric approach described in the paper enables the clear separation of syntactical and semantic conditions which inform decisions and the coordination of decisions made by agents in a simulation of use-patterns. This approach contributes to extending the analytical capability of Building Information Models from the point of view of evaluating how a proposed building design may be used, given complex, interrelated patterns of use.
keywords Agent-Based Systems, Simulation, Use-Patterns, Design Tools
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2017_064
id sigradi2017_064
authors Fonseca Motta, Silvio Romero; Ana Clara Moura Mourăo, Ana Clara Moura Mourăo, Suellen Roquete Ribeiro, Julia Marion Florencio Kato
year 2017
title Simulation of Scenarios and Urban Analysis Using Parametric Modeling and Genetic Algorithm Based on Multicriteria Analysis
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.434-440
summary The present paper surveys a method of changing the adequacy level of variables in multicriteria analysis (MCA) using parametric modeling. The aim is to simulate if-then scenarios to support resilience designs. The case study is a MCA for Pampulha region, Belo Horizonte, Brazil. The parametric model was developed in Grasshopper software, and defines, by knowledge-driven, a set of weight for an increased environmental quality which generates an index of suitability for each territorial unit. The if-then simulation changes the level of adequacy of 3 variables using a genetic algorithm, which calculates new distribution patterns for the MCA adequacy level.
keywords Multicriteria analysis; Parametric modeling; Genetic algorithm; Urban analysis; Scenario simulation.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_284
id acadia17_284
authors Hu, Zhengrong; Park, Ju Hong
year 2017
title HalO [Indoor Positioning Mobile Platform]: A Data-Driven, Indoor-Positioning System With Bluetooth Low Energy Technology To Datafy Indoor Circulation And Classify Social Gathering Patterns For Assisting Post Occupancy Evaluation
doi https://doi.org/10.52842/conf.acadia.2017.284
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 284-291
summary Post-Occupancy Evaluation (POE) as an integrated field between architecture and sociology has created practical guidelines for evaluating indoor human behavior within a built environment. This research builds on recent attempts to integrate datafication and machine learning into POE practices that may one day assist Building Information Modeling (BIM) and multi-agent modeling. This research is based on two premises: 1) that the proliferation of Bluetooth Low Energy (BLE) technology allows us to collect a building user’s data cost-effectively and 2) that the growing application of machine learning algorithms allows us to process, analyze and synthesize data efficiently. This study illustrates that the mobile platform HalO can serve as a generic tool for datafication and automation of data analysis of the movement of a building user. In this research, the iOS mobile application HalO, combined with BLE beacons enable building providers (architects, developers, engineers and facility managers etc.) to collect the user’s indoor location data. Triangulation was used to pinpoint the user’s indoor positions, and k-means clustering was applied to classify users into different gathering groups. Through four research procedures—Design Intention Analysis, Data Collection, Data Storage and Data Analysis—the visualized and classified data helps building providers to better evaluate building performance, optimize building operations and improve the accuracy of simulations.
keywords design methods; information processing; data mining; IoT; AI; machine learning
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2021_354
id caadria2021_354
authors Huang, Chenyu, Gong, Pixin, Ding, Rui, Qu, Shuyu and Yang, Xin
year 2021
title Comprehensive analysis of the vitality of urban central activities zone based on multi-source data - Case studies of Lujiazui and other sub-districts in Shanghai CAZ
doi https://doi.org/10.52842/conf.caadria.2021.2.549
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 549-558
summary With the use of the concept Central Activities Zone in the Shanghai City Master Plan (2017-2035) to replace the traditional concept of Central Business District, core areas such as Shanghai Lujiazui will be given more connotations in the future construction and development. In the context of todays continuous urbanization and high-speed capital flow, how to identify the development status and vitality characteristics is a prerequisite for creating a high-quality Central Activities Zone. Taking Shanghai Lujiazui sub-district etc. as an example, the vitality value of weekday and weekend as well as 19 indexes including density of functional facilities and building morphology is quantified by obtaining multi-source big data. Meanwhile, the correlation between various indexes and the vitality characteristics of the Central Activities Zone are tried to summarize in this paper. Finally, a neural network regression model is built to bridge the design scheme and vitality values to realize the prediction of the vitality of the Central Activities Zone. The data analysis method proposed in this paper is versatile and efficient, and can be well integrated into the urban big data platform and the City Information Modeling, and provides reliable reference suggestions for the real-time evaluation of future urban construction.
keywords multi-source big data; Central Activities Zone; Vitality; Lujiazui
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2017_163
id caadria2017_163
authors Kalantari, Saleh and Saleh Tabari, Mohammad Hassan
year 2017
title GrowMorph: Bacteria Growth Algorithm and Design
doi https://doi.org/10.52842/conf.caadria.2017.479
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 479-487
summary GrowMorph is an ongoing research project that addresses the logic of bacterial cellular growth and its potential uses in architecture and design. While natural forms have always been an inspiration for human creativity, contemporary technology and scientific knowledge can allow us to advance the principle of biomimesis in striking new directions. By examining various patterns of bacterial growth, including their parametric logic, their use of responsive membranes and scaffolding structures, and their environmental fitness, this research creates new algorithmic design and construction models that can be applied through digital fabrication. Based on data from confocal microscopy, simulations were created using programming language Processing to model the environmental responses and morphology of the bacteria's growth. To demonstrate the utility of the results, the simulations created in this research were used to design an organically shaped pavilion and to suggest a new digital knitting process for material construction. The results from the study can inspire designers to make use of bacterial growth logic in their work, and provide them with practical tools for this purpose. Potential applications include novel designs for responsive surfaces, new fabrication processes, and unique spatial structures in future architectural work.
keywords Synthetic Biology; Architecture; Bio-fabrication; Bio-constructs; Design Computation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2017_084
id sigradi2017_084
authors Macędo dos Santos, Deborah; José Nuno Dinis Cabral Beirăo
year 2017
title Generative tool to support architectural design decision of earthbag building domes
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.584-589
summary The interest in earthbag dome construction (also known as sandbag, superadobe or superblock construction) is increasing as a world consciousness develops to achieve the planet’s equilibrium for sustainable living. The main objective of this research is to develop a parametric tool to help architects modeling virtual earthbag domes from ideation to construction phase. This challenge has been addressed by adopting an experimental methodology that explores parametric generative design with the use of visual programming language (VPL). In this paper we present the development of a tool for the ideation level including features that allow for the calculation of material quantification. The usability of the tool was validated by earthbag constructors and architects.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_414
id acadia17_414
authors Mohiuddin, Arefin; Woodbury, Robert; Ashtari, Narges; Cichy, Mark; Mueller, Völker
year 2017
title A Design Gallery System: Prototype and Evaluation
doi https://doi.org/10.52842/conf.acadia.2017.414
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 414- 425
summary Designers work by creating alternatives. Current design media restrict this practice through their near-universal adherence to a single-state document model. We describe the implementation of an online gallery system built as part of a research program to understand new media types for working with design alternatives in parametric modeling. The online gallery supports multiple commercially available parametric modelers. A user study shows a significant difference between two modes of gallery operation and a qualitative study describes user patterns in using the online gallery system.
keywords design methods; information processing; HCI; generative system; design exploration
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_023
id ecaade2017_023
authors Pankiewicz, Mateusz
year 2017
title Causes and effects - Methodologies used in digitalization of architectural-urban heritage
doi https://doi.org/10.52842/conf.ecaade.2017.2.025
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 25-30
summary Since some time already, digital reconstructions in architecture, urbanism and archaeology are gradually switching from describing built heritage as a collection of static and unchangeable entities towards more compound and explicit presentation and knowledge management techniques. This includes for instance data management and multimedia systems, immersive environments or semantic information modelling such as GIS (Geospatial Information Systems), BIM (Building Information Modeling) or HBIM (Historic Building Information Modeling). Graphical user interfaces, interaction and usability have become an essential part of produced reconstructions. This shift in terms of dissemination of an architectural and urban heritage that is supposed to increase the social awareness and participation should be structured in a way that enables recipients originating from different backgrounds to grasp information pertaining to almost any knowledge domain, allowing for self-exploration and interpretation of presented knowledge. This paper discusses important nodes of the reconstruction process in the spirit of informative modelling that are characteristic for any possible approach towards conscious heritage representations.
keywords Informative modelling; Spatio-temporal modelling; Cultural heritage
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2017_033
id caadria2017_033
authors Qu, Tengteng, Zang, Wei, Peng, Zhenwei, Liu, Jun, Li, Weiwei, Zhu, Yun, Zhang, Bin and Wang, Yongsheng
year 2017
title Construction Site Monitoring Using UAV Oblique Photogrammetry and BIM Technologies
doi https://doi.org/10.52842/conf.caadria.2017.655
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 655-662
summary Traditional construction site monitoring primarily relies on a human presence. Automated construction progress monitoring is expected to make this process much more efficient and precise. The planned state of construction (as-planned) must be validated by the actual state (as-built) during automated construction progress monitoring. This research uses an integrated application of high-resolution low-altitude UAV (Unmanned Aerial Vehicle) oblique photogrammetry and Building Information Modeling (BIM) technologies for construction site management. A case study was carried out for a renewable energy development program in the JiaDing District of Shanghai, China. A high-resolution 3D model of the construction site acquired by our multi-motor UAV provides data to illustrate the as-built state of the construction program. Comparison of the UAV-based 3D model (as-built) with the BIM-based 3D model (as-planned) for a specific chimney was used for dynamic construction site monitoring. Our results show 3D illustrations of construction progress. This research demonstrates that the BIM technology in conjunction with the use of UAV photogrammetry provides efficient and precise as-built data collection and illustration of construction progress.
keywords Oblique Photogrammetry; UAV; 3D modeling; BIM; construction site monitoring
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2017_000
id sigradi2017_000
authors Roco Ibaceta, Miguel
year 2017
title Resilience Design
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017
summary The chosen theme, Resilience Design, evidences the researchers’ concern about issues related to our reality of climate change and natural disasters, associated with the states of vulnerability and risk, having wide effects on society and the way we inhabit territories. These matters are fundamental and highly relevant for the disciplines and in the fields of design and architecture, as they are also important for collaborative work with areas emerging from the arts and human sciences. Thinking about Resilience Design is to set ourselves on new scenarios of reflection and action which, supported by transdisciplinary thinking and collaborative design, allow us to develop a new approach towards our territories and their demands, one that is more contextualized and adjusted to their current and future requirements, a starting point to establish the key elements to drive change in our cities and society. In this sense, technology and digital development, parametric design, the use of Information and Communication Technologies (ICT) and Geographic Information Systems (GIS), in addition to work done with Building Information Modelling (BIM), among many others, have been delivering an enormous amount of tools and possibilities of interaction with living in society, leading to a substantive change in the way of understanding and relating to the built environment and the territories where buildings are sit. This demands a strong commitment to Social Responsibility from our disciplines, besides the necessary landing of cutting-edge technological and digital research and development onto our diverse realities, in order for them to be put at the service of communities in vulnerable environments or with a marked condition of risk, which are subject to constant processes of resilience. Working on Resilience Design allows to support research and productive processes, plus the appearance of new technologies in interdisciplinary contexts, which greatest value is to impact the processes of teaching and professional practice in the different areas related to human habitation. The new professionals will have to take action and immerse themselves into these new scenarios of change and constant adjustment.
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia17_600
id acadia17_600
authors Tabrizian, Payam; Harmon, Brendan; Petrasova, Anna; Petras, Vaclav; Mitasova, Helena; Meentemeyer, Ross
year 2017
title Tangible Immersion for Ecological Design
doi https://doi.org/10.52842/conf.acadia.2017.600
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 600- 609
summary We introduce tangible immersion—virtual reality coupled with tangible interaction—to foster interdisciplinary collaboration in a critical yet creative design process. Integrating tangible, embodied interaction with geospatial modeling and immersive virtual environments (IVE) can make 3D modeling fast and natural, while enhancing it with realistic graphics and quantitative analytics. We have developed Tangible Landscape, a technology that links a physical model with a geographic information system and 3D-modeling platform through a real-time cycle of interaction, 3D scanning, geospatial computation, and 3D rendering. With this technology, landscape architects, other professionals, and the public can collaboratively explore design alternatives through an iterative process of intuitive ideation, geocomputational analysis, realistic rendering, and critical analysis. This is demonstrated with a test case for interdisciplinary problem-solving, in which a landscape architect and geoscientist use Tangible Landscape to collaboratively design landforms, hydrologic systems, planting, and a trail network for a brownfield site. Using this tangible immersive environment they rapidly explored alternative scenarios. We discuss how the participants used real-time analytics to collaboratively assess trade-offs between environmental and experiential factors, balancing landscape complexity, biodiversity, remediation capacity, and aesthetics. Together they explored how the relationship between landforms and natural processes affected the performance of the designed landscape. Technologies that couple tangible geospatial modeling with IVEs have the potential to transform the design process by breaking down disciplinary boundaries, but may also offer new ways to imagine space and democratize design.
keywords design methods; information processing; simulation & optimization; collaboration; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia17_670
id acadia17_670
authors Zwierzycki, Mateusz; Vestartas, Petras; Heinrich, Mary Katherine; Ayres, Phil
year 2017
title High Resolution Representation and Simulation of Braiding Patterns
doi https://doi.org/10.52842/conf.acadia.2017.670
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 670- 679
summary From the hand-crafted to the highly engineered, braided structures have demonstrated broad versatility across scales, materials, and performance types, leading to their use in a plethora of application domains. Despite this prevalence, braided structures have seen little exploration within a contemporary architectural context. Within the flora robotica project, complex braided structures are a core element of the architectural vision, driving a need for generalized braid design modeling tools that can support fabrication. Due to limited availability of existing suitable tools, this interest motivates the development of a digital toolset for design exploration. In this paper, we present our underlying methods of braid topology representation and physics-based simulation for hollow tubular braids. We contextualize our approach in the literature where existing methods for this class of problem are not directly suited to our application, but offer important foundations. Generally, the tile generation method we employ is an already known approach, but we meaningfully extend it to increase the flexibility and scope of topologies able to be modeled. Our methods support design workflows with both predetermined target geometries and generative, adaptive inputs. This provides a high degree of design agency by supporting real-time exploration and modification of topologies. We address some common physical simulation problems, mainly the overshooting problem and collision detection optimization, for which we develop dynamic simulation constraints. This enables unrolling into realistically straight strips, our key fabrication-oriented contribution. We conclude by outlining further work, specifically the design and realization of physical braids, fabricated robotically or by hand.
keywords design methods; information processing; fabrication; digital craft; manual craft; representation
series ACADIA
email
last changed 2022/06/07 07:57

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_430814 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002