CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id ecaade2017_085
id ecaade2017_085
authors Agustí-Juan, Isolda, Hollberg, Alexander and Habert, Guillaume
year 2017
title Integration of environmental criteria in early stages of digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2017.2.185
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 185-192
summary The construction sector is responsible for a big share of the global energy, resource demand and greenhouse gas emissions. As such, buildings and their designers are key players for carbon mitigation actions. Current research in digital fabrication is beginning to reveal its potential to improve the sustainability of the construction sector. To evaluate the environmental performance of buildings, life cycle assessment (LCA) is commonly employed. Recent research developments have successfully linked LCA to CAD and BIM tools for a faster evaluation of environmental impacts. However, these are only partially applicable to digital fabrication, because of differences in the design process. In contrast to conventional construction, in digital fabrication the geometry is the consequence of the definition of functional, structural and fabrication parameters during design. Therefore, this paper presents an LCA-based method for design-integrated environmental assessment of digitally fabricated building elements. The method is divided into four levels of detail following the degree of available information during the design process. Finally, the method is applied to the case study "Mesh Mould", a digitally fabricated complex concrete wall that does not require any formwork. The results prove the applicability of the method and highlight the environmental benefits digital fabrication can provide.
keywords Digital fabrication; Parametric LCA; Early design; Sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_175
id ecaade2017_175
authors Alfaiate, Pedro and Leit?o, António
year 2017
title Luna Moth - A Web-based Programming Environment for Generative Design
doi https://doi.org/10.52842/conf.ecaade.2017.2.511
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 511-518
summary Current Generative Design (GD) tools require installation and regular updates. On top of that, programs that are created using them are stored as files, which have to be moved and shared manually with others. On the other hand, web applications are accessible using just a web browser and they can also store information remotely, meaning that it does not need to be moved and is easily shared with others. Consequently, GD tools should also be available as web applications to get the same functionality. We present Luna Moth, an IDE for GD available from the web that shows the relationship between a program and its results and integrates into the architect's workflow. Then, we give examples where Luna Moth's features help the architect during the programming process. Finally, we compare Luna Moth's performance with other IDEs, namely, Grasshopper, OpenJSCAD, and Rosetta.
keywords Generative Design; Web application; Design tool integration;
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2017_182
id caadria2017_182
authors Austin, Matthew
year 2017
title The Other Digital - What is the Glitch in Architecture?
doi https://doi.org/10.52842/conf.caadria.2017.551
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 551-559
summary This paper will discuss and investigate the issues with the concept of 'glitch' in architecture. There are currently two definitions that sit in a symbiotic relationship with each other; Moradi's (2004) and Menkman's (2011). This paper will explore the implications of these two approaches, while investigating the possibility of a third, unique definition (the encoded transform), and what effect they have on the possibility for a 'glitch architecture'. The paper will then focus on the glitches' capacity to be disruptive within the design process. In the context of architecture, it has been previously argued that the inclusion of glitches within a design process can easily create a process that does not 'converge' to a desired design outcome, but instead shifts haphazardly within a set of family resemblances (Austin & Perin 2015). Further to this, it will be revealed that this 'divergent' quality of glitches is due to the encoded nature of architectural production.
keywords Glitch aesthetics; Theory; Algorithmic Design; Process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_011
id ecaade2017_011
authors Haeusler, M. Hank, Asher, Rob and Booth, Lucy
year 2017
title Urban Pinboard - Development of a platform to access open source data to optimise urban planning performance
doi https://doi.org/10.52842/conf.ecaade.2017.1.439
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 439-448
summary In this paper we present our research to design and develop 'Urban Pinboard', a platform to optimise urban planning process and performance. We argue that second machine age general purpose technologies can now be accessed for city modelling. Based on the observation that: GIS does offer a depository that can display urban data; data sets exist but often stored at different locations; there is a discrepancy of access to planning information; and the data often are not accessible to private / public sector and the general public on one location, Urban Pinboard aims to address these problems as an integrated digital platform that enables the public, private and community sectors to connect by contributing ideas, comments and proposals on all planning issues in a single platform. The paper outlines the background research, methodology and introduces the Urban Pinboard's features to create a single source of truth for planning data.
keywords Software development; web-based GIS platform; Urban Planning; planning data
series eCAADe
email
last changed 2022/06/07 07:49

_id cf2017_297
id cf2017_297
authors He, Yi; Schnabel, Marc Aurel; Chen, Rong; Wang, Ning
year 2017
title A Comprehensive Application of BIM Modelling for Semi-underground Public Architecture: A Study for Tiantian Square Complex, Wuhan, China
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 297-308.
summary The paper presents research on how Building Information Modelling (BIM) can be applied comprehensively throughout the design of an architectural project. A practical method based on BIM models that help to deal with multidisciplinary issues by integrating the design information from different sources, collaborators and project stages is formulated by adopting existing available tools. The ‘Tiantian Square’ building project in Wuhan, China combines a subway station with a commercial hug. According to the project’s size and complexity, our study focuses on the multiple cooperation of professionals from different backgrounds, including the departments of architectural design, structure (civil engineering), HVAC (Heating, Ventilation and Air Conditioning), water supply and drainage, and electrics and sustainable design. Our paper presents how the BIM model bridges between various simulation platforms through our technical system and management, including steps of transformation, simplification, analysis, reaction and improvement. Our research has helped to improve the overall efficiency and quality of the project. We generated a successful analysis-design approach for the initial design stages, which does not require in-depth analysis. It is a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Finally, we discuss how the coordination of different department becomes a crucial factor as we look forward to a more open, communicative and inter-relational design and development process.
keywords BIM, Subway Complex, Simulation, Semi-Underground Architecture
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_003
id ecaade2017_003
authors Yu, Kuai, Haeusler, M. Hank and Fabbri, Alessandra
year 2017
title Parametric master planning via topological analysis using GIS data
doi https://doi.org/10.52842/conf.ecaade.2017.1.429
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 429-438
summary This paper discusses parametricism in regards to urban planning and infrastructure. The objective is to bridge GIS data (using FLUX) and the parametric design process together into urban master planning. Creating a tool which generates the infrastructure and grid system automatically using specified manual user inputs, allowing for further generation of 3D forms from the block patterns. It also critically analyses the traditional master planning approach of grid system division in regards to topography, and how classical urban designers did not consider topographical constraints when a square grid system was employed to structure a city. The analysis of existing parametric master plans will also show that data driven planning has not put topography as a significant hierarchical. Through case studies using the developed tool, a clearer understanding of how topography can shape infrastructure can be understood. The analysis of topography is the main driving data iteration point which generates the infrastructure, grid, and division systems.
keywords Master Plan; Parametricism; Urban Design; GIS Data; Topography Optimisation; FLUX
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia17_28
id acadia17_28
authors Aguiar, Rita; Cardoso, Carmo; Leit?o,António
year 2017
title Algorithmic Design and Analysis Fusing Disciplines
doi https://doi.org/10.52842/conf.acadia.2017.028
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 28-37
summary In the past, there has been a rapid evolution in computational tools to represent and analyze architectural designs. Analysis tools can be used in all stages of the design process, but they are often only used in the final stages, where it might be too late to impact the design. This is due to the considerable time and effort typically needed to produce the analytical models required by the analysis tools. A possible solution would be to convert the digital architectural models into analytical ones, but unfortunately, this often results in errors and frequently the analytical models need to be built almost from scratch. These issues discourage architects from doing a performance-oriented exploration of their designs in the early stages of a project. To overcome these issues, we propose Algorithmic Design and Analysis, a method for analysis that is based on adapting and extending an algorithmic-based design representation so that the modeling operations can generate the elements of the analytical model containing solely the information required by the analysis tool. Using this method, the same algorithm that produces the digital architectural model can also automatically generate analytical models for different types of analysis. Using the proposed method, there is no information loss and architects do not need additional work to perform the analysis. This encourages architects to explore several design alternatives while taking into account the design’s performance. Moreover, when architects know the set of design variations they wish to analyze beforehand, they can easily automate the analysis process.
keywords design methods; information processing; simulation & optimization; BIM; generative system
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_62
id acadia17_62
authors Al-Assaf, Nancy S.; Clayton, Mark J.
year 2017
title Representing the Aesthetics of Richard Meier’s Houses Using Building Information Modeling
doi https://doi.org/10.52842/conf.acadia.2017.062
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 62-71
summary Beyond its widespread use for representing technical aspects and matters of building and construction science, Building information modeling (BIM) can be used to represent architectural relationships and rules drawn from aesthetic theory. This research suggests that BIM provides not only vocabulary but also syntactical tools that can be used to capture an architectural language. In a case study using Richard Meier’s language for single-family detached houses, a BIM template has been devised to represent the aesthetic concepts and relations therein. The template employs parameterized conceptual mass objects, syntactical rules, and a library of architectonic elements, such as walls, roofs, columns, windows, doors, and railings. It constrains any design produced using the template to a grammatically consistent expression or style. The template has been used as the starting point for modeling the Smith House, the Douglas House, and others created by the authors, demonstrating that the aesthetic template is general to many variations. Designing with the template to produce a unique but conforming design further illustrates the generality and expressiveness of the language. Having made the formal language explicit, in terms of syntactical rules and vocabulary, it becomes easier to vary the formal grammar and concrete vocabulary to produce variant languages and styles. Accordingly, this approach is not limited to a specific style, such as Richard Meier's. Future research can be conducted to demonstrate how designing with BIM can support stylistic change. Adoption of this approach in practice could improve the consistency of architectural designs and their coherence to defined styles, potentially increasing the general level of aesthetic expression in our built environment.
keywords design methods; information processing; BIM; education
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_208
id ecaade2017_208
authors Beaudry Marchand, Emmanuel, Han, Xueying and Dorta, Tomás
year 2017
title Immersive retrospection by video-photogrammetry - UX assessment tool of interactions in museums, a case study
doi https://doi.org/10.52842/conf.ecaade.2017.2.729
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
summary Studying interactions in museums often omits to consider the complexity of the space and the visitors' behaviors. Visitors' walking paths do not provide enough insight of their user experience (UX) since they are distant from the experiential realities. Videogrammetry can convey such dimensions of an environmental experience. Because of limitations of real-time playback, a twofold approach is suggested: "immersive videos" combined with "photogrammetric models". A granular optimal experience assessment method using retrospection interviews is also applied providing a finer evaluation of the perceived experience through time. This method permits to characterize museum interactive installations, according to the perceived challenges and skills of the interaction's task, based this time on immersive retrospection. This paper proposes the "Immersive retrospection" by "Immersive video-photogrammetry" as a UX assessment tool of interactions in museums. A hybrid virtual environment was used in this study, allowing social VR without the use of headsets, through a life-sized projection of interactive 3D content. The study showed that Immersive video-photogrammetry facilitates the recall of memories and allows a deepened self-observation analysis.
keywords immersive retrospection; photogrammetry; videogrammetry; UX assessment; museum environments
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_027
id ecaade2017_027
authors Carl, Timo, Schein, Markus and Stepper, Frank
year 2017
title Sun Shades - About Designing Adaptable Solar Facades
doi https://doi.org/10.52842/conf.ecaade.2017.2.165
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 165-174
summary External shading structures are a well-established typology for reducing solar heat loads. A major disadvantage is their inflexible nature, blocking views from inside and desired solar radiation for seasons with less sunshine hours. An adaptive approach on the other end can accommodate dynamic environmental exchange and user control. Furthermore, kinetic movement has great potential to create expressive spatial structures. However, such typologies are inherently complex. This paper presents the design process for two novel adaptive façade typologies, conducted on an experimental level in an educational context. Moreover, we will discuss the conception of a suitable methodological framework, which we applied to engage the complexity of this design task. Thereby we will highlight the importance of employing various methods, combining analogue and computational models not in a linear sequence, but rather in an overlapping, iterative way to create an innovation friendly design setting. The Sun Shades project offers insight into the relationships between design potentials inherent in adaptable structures and the advantages and limitation of computational methods employed to tackle them.
keywords computational design methodology; performance-based design; associative geometry modelling; solar simulation; physical form-finding; design theory
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_002
id ecaade2017_002
authors Costa, Fábio, Eloy, Sara, Sales Dias, Miguel and Lopes, Mariana
year 2017
title ARch4models - A tool to augment physical scale models
doi https://doi.org/10.52842/conf.ecaade.2017.1.711
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-718
summary This paper focus on the development and evaluation of a computer tool that enriches physical scale models of buildings, which are commonly used during architecture and civil engineering design processes. The main goal of this work is to enable designers, namely architects, to use the affordances of the physical scale models, by enhancing them with digital characteristics that can be easily changed, allowing an enriched interaction of the designer with such models. Our in-house developed Augmented Reality tool, referred to as ARch4models, augments the user experience with visual features and interactive capabilities, not possible to accomplish with physical models (see this video in https://goo.gl/5zbdTQ). The tool allows the coherent registration between the real and the digital in the same space. Satisfaction evaluation studies were conducted that have shown that ARch4models improves the building design process when compared with a traditional methodology employing solely physical scale models.
keywords augmented reality; architecture; physical scale model; 3D model; AEC design process
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
doi https://doi.org/10.52842/conf.acadia.2017.238
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id cf2017_533
id cf2017_533
authors El-Zanfaly, Dina; Abdelmohsen, Sherif
year 2017
title Imitation in Action: A Pedagogical Approach for Making Kinetic Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 533-545.
summary One of the problems in teaching students how to design kinetic architecture is the difficulty of helping them grasp concepts like motion, physical computing and fabrication, concepts not generally dealt with in conventional architectural projects. In this paper, we introduce a pedagogical method for better utilizing prototyping and explore the role prototyping plays in learning and conceptualizing design ideas. Our method is based on building the learner’s sensory experience through iteration and focusing on the process as well as the product. Specifically, our research attempts to address the following questions: How can architecture students anticipate and feel motion while they design kinetic prototypes? How do their prototypes enable them to explore design ideas? As a case study, we applied our methodology in an 8-week workshop in a fabrication laboratory in Cairo, Egypt. The workshop was open to young architects and students who had completed at least four semesters of study at the university. We describe the pedagogical approach we developed to build the sensory experience of making motion, and demonstrate the basic setting and stages of the workshop. We show how a cyclical learning process, based on perception and action -- copying and iteration -- contributed to the students’ learning experience and enabled them to create and improvise on their own.
keywords Kinetic Architecture, Digital Fabrication, Sensory Experience, Computational Making, Imitation
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_288
id ecaade2017_288
authors Emo, Beatrix, Treyer, Lukas, Schmitt, Gerhard and Hoelscher, Christoph
year 2017
title Towards defining perceived urban density
doi https://doi.org/10.52842/conf.ecaade.2017.2.637
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 637-646
summary The aim of the paper is to identify parameters that influence perceived urban density. Whilst it is standard for architects and planners to consider urban density, there is often no consideration of how individuals might perceive such density. We report the findings of a study in which participants rate photographs of urban scenes according to perceived urban density. The case study area is central Zurich, Switzerland. The images are analyzed according to six parameters: visibility, amount of buildings, street width, amount of sky, amount of green space, and amount of vehicles. We report the findings of where images were ranked along a scale from lowest to highest perceived urban density. Findings show that visibility alone is not enough to explain the rating of perceived urban density. The study is a first step towards reaching a definition of perceived urban density that can be applied to different urban contexts.
keywords urban density; perception; behavioural study; 3D reconstruction
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_001
id ecaade2017_001
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2017.2
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 760 p.
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2017_000
id ecaade2017_000
authors Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.)
year 2017
title ShoCK! – Sharing of Computable Knowledge!, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2017.1
source ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, 770 p.
summary Internet of Things, pervasive nets, Knowledge ‘on tap’, Big Data, Wearable devices and the ‘Third wave’ of AI are disruptive technologies that are upsetting our globalised world as far as it can be foreseen from now. So academicians, professionals, researchers, innovation factories... are warmly invited to further shake up and boost our innovative and beloved CAAD world with new ideas, paradigms and points of view. Will our fine buildings and design traditions survive? Or, will they ‘simply’ be hybridized and enhanced by methods, techniques and CAAD tools? Obviously computation is needed to match the evergrowing performance requirements, but this is not enough to answer all these questions we have to deal with the essence of problems: improve design solutions for a better life. As life is not a matter of single individuals, we need to increase collaboration and to improve knowledge sharing. This means taking care of human beings, and involves a humanistic approach, and the long history of humankind ... from humans to thinking to technology ... and vice versa. A circle of human beings as eternal as our city.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2017_037
id ecaade2017_037
authors Hassan Khalil, Mohamed
year 2017
title Learning by Merging 3D Modeling for CAAD with the Interactive Applications - Bearing walls, Vaults, Domes as Case study
doi https://doi.org/10.52842/conf.ecaade.2017.1.353
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 353-362
summary The development and the innovation of tools, techniques and digital applications represent a challenge for those who are in charge of architectural education to keep up with this development. This is because these techniques provide potentials that are not available in the traditional method of teaching. This raises an important question: can these tools and techniques help to achieve the targeted outcomes of education? This research paper discusses how to integrate both digital 3D models, of CAAD, and interactive applications for the development of architectural education curriculum. To test this, a case study has been conducted on the subject of building construction, for the second year at the faculty of engineering, specifically, the bearing walls construction system. In addition, this study has been divided into three parts. Through the first part, the scientific content of the curriculum, which tackles the bearing walls, has been prepared. The second part shows how to convert the scientific content into an interactive content in which the students learn through the experiment and the simulation of the traditional construction methods as the students a acquire construction skills and the ability to imagine different structural complexities. The third part includes the creation of both the application and the software containing the interactive curriculum. Workshop for the students has been held as a case study to test the effectiveness of this development and to recognize the pros and cons. The results confirmed the importance of integrating this applications into architectural education.
keywords CAAD; 3D modeling ; Building Construction; Interactive applications; Bearing walls systems
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_112
id ecaade2017_112
authors K?rdar, Gülce and Çolako?lu, Birgül
year 2017
title Hygro_Responsive Structure - Material System Design
doi https://doi.org/10.52842/conf.ecaade.2017.2.309
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 309-316
summary Responsive systems have the ability to transform their form in response to changing conditions. The responsive system design has been shifted to material system design. Material system design examines the material and utilizes the material behaviour to accomplish the responsiveness. A material system comprises the interaction of the material with form, structure, energy and environment. The study questions how the material properties can be utilized to develop computationally enhanced responsive system which is not activated by energy or mechanical support.
keywords Computational form generation; material behaviour; Responsive material system
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_99520 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002