CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 575

_id caadria2017_057
id caadria2017_057
authors Buš, Peter, Treyer, Lukas and Schmitt, Gerhard
year 2017
title Urban Autopoiesis - Towards Adaptive Future Cities
doi https://doi.org/10.52842/conf.caadria.2017.695
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 695-704
summary A city, defined as a unity of inhabitants with their environment and showing self-creating and self-maintaining properties, can be considered as an autopoietic system if we take into account its bottom-up processes with unpredictable behaviour of its components. Such a property can lead to self-creation of urban patterns. These processes are studied in well-known vernacular architectures and informal settlements around the world and they are able to adapt according to various conditions and forces. The main research objective is to establish a computational design-modelling framework for modelling autopoietic intricate characteristics of a city based on an adaptability, self-maintenance and self-generation of urban patterns with adequate visual representation.The paper introduces a modelling methodology that allows to combine planning tasks with inhabitants' interaction and data sources by using an interchange framework to model more complex urban dynamics. The research yields preliminary results tested in a simulation model of a redevelopment of Tanjong Pagar Waterfront, the container terminal in the city of Singapore being transformed into a new future centre as a conducted case study.
keywords Urban Metabolism; Urban Autopoiesis; Computational Interchange; Emergent Urban Strategies; Adaptive City
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2017_630
id cf2017_630
authors Muehlbauer, Manuel; Song, Andy; Burry, Jane
year 2017
title Towards Intelligent Control in Generative Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 630-647.
summary This position paper proposes and defines the nature of a framework, which explores ways of integrating control system (CS) with machine intelligence for generative design (GD). This paper elaborates about the implications of and the potential for impact on GD. The framework described in this work can be used as an active tool to drive design processes and support decision making process in early stages of architectural design. This type of system can be either automated in nature or adaptive to regular user input as part of interactive design mechanisms. The module of CS in the framework would allow additional guidance during design and therefore reduce the need of manual input to enable a semi-automated design practice for lengthy generative processes. This study on GD reveals emergent properties of the framework, for example the introduction of intelligent control allows guidance of GD to meet specified performance criteria and intended aesthetic expressions with reduced need for user interaction.
keywords Semi-Automated Design, Evolutionary Architecture, Generative Design, Architectural Optimisation, Artificial Intelligence
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_546
id cf2017_546
authors Hysa, Desantila; Özkar, Mine
year 2017
title Meno in the Studio: Design Computation in a Pedagogical Dialogue
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 546-562.
summary Competence in learning comprises combinations of knowledge, skills, and attitudes. Yet it is difficult to articulate and assess the learning objectives for attitudes. This paper focuses on the role of computation in providing an instrumental medium for attitude development and assessment in the design learning settings of the future. Our study draws from a passage on a mathematical inquiry in Plato’s Meno and makes a case of its aspects of visual reasoning and learning as reflection in action. Reporting on attitudes observed in an inquiry conducted with similar role play with foundational design students, we show that analog computation with visual rules supports the externalization of mental processes in basic design exercises and endorses beginning practices of accountable designing.
keywords Attitudes, Foundation Studio, Shape Rules
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_298
id acadia17_298
authors Johnson, Jason S.; Gardner, Guy
year 2017
title Pareidolic Formations
doi https://doi.org/10.52842/conf.acadia.2017.298
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 298- 307
summary The use of ornament in public space has been contested throughout history, and attitudes towards the articulation of building surfaces have shifted over time. Antoine Picon has argued that the use of ornament to communicate meaning and identity is returning to a place of cultural prominence. Well-established digital design and fabrication technologies have given rise to projects that integrate performance and aesthetics through the exploitation of form, pattern and ornament. These techniques allow the designer to inscribe and overlay data generated through performance simulation and environmental analysis, and formal relationships and fabrication processes onto materials and spatial fields, creating novel configurations and effects. Operating at a scale between object and building, public art, sculpture and architectural ornament allow for a particular type of interdisciplinary experimentation and hybrid practice. Three recent public art proposals illustrate an approach that composites multiple datasets to generate new relationships between aesthetic, environmental and functional considerations in order to activate public space. The proposals presented here put forward a set of tactics that can be deployed towards embedding overlapping data in public spaces. These proposals use pattern to form and form to pattern workflows as a way to produce multiple potential readings through pareidolia. This paper presents an investigation into how contemporary digital design and fabrication processes can bridge between performance and perception, and how ornament and pattern might be deployed for both formal and performative purposes to help foster a more personalized relationship with the urban spaces we occupy.
keywords education, society & culture; data mining; form finding; education
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_288
id ecaade2017_288
authors Emo, Beatrix, Treyer, Lukas, Schmitt, Gerhard and Hoelscher, Christoph
year 2017
title Towards defining perceived urban density
doi https://doi.org/10.52842/conf.ecaade.2017.2.637
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 637-646
summary The aim of the paper is to identify parameters that influence perceived urban density. Whilst it is standard for architects and planners to consider urban density, there is often no consideration of how individuals might perceive such density. We report the findings of a study in which participants rate photographs of urban scenes according to perceived urban density. The case study area is central Zurich, Switzerland. The images are analyzed according to six parameters: visibility, amount of buildings, street width, amount of sky, amount of green space, and amount of vehicles. We report the findings of where images were ranked along a scale from lowest to highest perceived urban density. Findings show that visibility alone is not enough to explain the rating of perceived urban density. The study is a first step towards reaching a definition of perceived urban density that can be applied to different urban contexts.
keywords urban density; perception; behavioural study; 3D reconstruction
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_056
id ecaade2017_056
authors Kontovourkis, Odysseas
year 2017
title Multi-objective design optimization and robotic fabrication towards sustainable construction - The example of a timber structure in actual scale
doi https://doi.org/10.52842/conf.ecaade.2017.1.337
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 337-346
summary This paper attempts to reconsider the role of advanced tools and their effective implementation in the field of Architecture, Engineering and Construction (AEC) through the concept of sustainable construction. In parallel, the paper aims to discuss and find common ground for communication between industrial and experimental processes guided by sustainable criteria, an area of investigation that is currently in the forefront of the research work conducted in our robotic construction laboratory. Within this frame, an ongoing work into the design, analysis and automated construction of a timber structure in actual scale is exemplified and used as a pilot study for further discussion. Specifically, the structure consists of superimposed layers of timber elements that are robotically cut and assembled together, formulating the overall structural system. In order to achieve a robust, reliable and economically feasible solution and to control the automated construction process, a multi-objective design optimization process using evolutionary principles is applied. Our purpose is to investigate possibilities for sustainable construction considering minimization of cost and material waste, and in parallel, discussing issues related to the environmental impact and the feasibility of solutions to be realized in actual scale.
keywords Multi-objective optimization; robotic fabrication; cost and material waste minimization; sustainable construction; timber structure
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2017_079
id caadria2017_079
authors Miyake, Munetoshi, Fukuda, Tomohiro, Yabuki, Nobuyoshi and Motamedi, Ali
year 2017
title Outdoor MarkerLess Augmented Reality - A System for Visualizing Building Models Using Simultaneous Localization and Mapping
doi https://doi.org/10.52842/conf.caadria.2017.095
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 95-104
summary In this study, an Augmented Reality (AR) system is developed to be used for visualizing design projects of buildings. In such design projects, it is desirable to enable design stakeholders visualizing the outcomes of different design options to reduce the resistance and hesitation towards new design challenges. The research proposes an outdoor mark-er-less AR using Simultaneous Localization and Mapping (SLAM) for the AR tracking. Our proposed system performs reconstruction and localization steps in real-time, as opposed to similar methods in which the reconstruction step is done offline. A case study has been performed for a de-sign scenario of buildings. The case study verified the performance of visualization and tracking.
keywords Architecture and urban environment; Augmented Reality (AR); Simultaneous Localization and Mapping (SLAM); Visualization
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2017_151
id ecaade2017_151
authors Moloney, Jules, Twose, Simon, Jenner, Ross, Globa, Anastasia and Wang, Rui
year 2017
title Lines from the Past - Non-photorealistic immersive virtual environments for the historical interpretation of unbuilt architectural drawings
doi https://doi.org/10.52842/conf.ecaade.2017.2.711
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-720
summary The trajectory of virtual reality for architecture is towards photo-realism. While this may be effective for some contexts, we propose that abstraction is more appropriate for the purposes of a historian interpreting drawings of unbuilt works of architecture. The case study we are using to explore this proposition is the Palazzo Littorio competition set in 1934 Rome. We present two prototype immersive virtual reality (iVR) applications developed in Unity for Oculus Rift: the first uses an etching aesthetic to produce a quasi-realistic site context and an interface that enables the comparative evaluation of competition entries from key viewing positions; the second application takes an even more abstract approach, where the aim is to immerse the historian within a 3D drawing, along with other historical material (drawings, photos, paintings, narrations of texts) and uses spatialized sound to evoke the ambience of the period.
keywords Virtual Reality; Non-Photorealism; Architectural History
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2017_265
id ecaade2017_265
authors Motalebi, Nasim and Duarte, José Pinto
year 2017
title A Shape Grammar of Emotional Postures - An approach towards encoding the analogue qualities of bodily expressions of emotions
doi https://doi.org/10.52842/conf.ecaade.2017.2.485
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-492
summary This paper is concerned with the translation of analogue qualities of human emotions into digital readings. Human body postures are considered as one of the main behavioral conduits for non-verbal communication and emotional expressions (Shan et.al., 2007). This research is the first step towards identifying and detecting emotions through posture analysis of users moving through space; leading towards generating real time responses in the form of spatial configurations to users' emotions. Such spatial configurations would then help inhabitants reach certain emotional states that would enhance their life quality. In order to achieve this goal, we propose a methodology for developing a comprehensive shape grammar algorithm that could evaluate and predict bodily expressions of emotions. The importance of this study lies under the embodied interactions (Streech et.al., 2011) in space. As the circumfixed space impacts the embodied mind, the body impacts its surrounding including the architectural space.
keywords Shape Grammar; Computation; Emotion; Posture; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_38
id acadia17_38
authors Ahlquist, Sean; McGee, Wes; Sharmin, Shahida
year 2017
title PneumaKnit: Actuated Architectures Through Wale- and Course-Wise Tubular Knit-Constrained Pneumatic Systems
doi https://doi.org/10.52842/conf.acadia.2017.038
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 38-51
summary This research explores the development of seamless pneumatically actuated systems whose motion is controlled by the combination of differentially knitted textiles and standardized thin-walled silicone tubing. This work proposes a fundamental material strategy that addresses challenges ranging from soft robotics to pneumatic architecture. Research in soft robotics seeks to achieve complex motions through non-mechanical monolithic systems, comprised of highly articulated shapes molded with a combination of elastic and inelastic materials. Inflatables in architecture focus largely on the active structuring of static forms, as facade systems or as structured envelopes. An emerging use of pneumatic architecture proposes morphable, adaptive systems accomplished through differentiated mechanically interconnected components. In the research described in this paper, a wide array of capabilities in motion and geometric articulation are accomplished through the design of knitted sleeves that generate a series of actuated “elbows.” As opposed to molding silicone bladders, differentiation in motion is generated through the more facile ability of changing stitch structure, and shaping of the knitted textile sleeve, which constrains the standard silicone tubing. The relationship between knit differentiation, pneumatic pressure, and the resultant motion profile is studied initially with individual actuators, and ultimately in propositions for larger seamless assemblies. As opposed to a cellular study of individual components, this research proposes structures with multi-scalar articulation, from fiber and stitch to overall form, composed into seamless, massively deformable architectures.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_128
id acadia17_128
authors Bacharidou, Maroula
year 2017
title Touch, See, Make: Employing Active Touch in Computational Making
doi https://doi.org/10.52842/conf.acadia.2017.128
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 128-137
summary In architectural education and practice, we don’t come in physical contact with what we make until the later stages of the design process. This vision-oriented approach to design is something deeply rooted in architectural practice: from Alberti’s window to the screens of our computers, design has traditionally been more of a visual and less of a hands-on process. The vision of the presented study is that if we want to understand the way we make in order to improve tools for computational design and making, we need to understand how our ability to make things is enhanced by both our visual and tactile mechanisms. Bringing the notion of active touch from psychology into the design studio, I design and execute a series of experiments investigating how seeing, touching, or seeing and touching exhibit different sensory competencies, and how these competencies are expressed through the process of making. The subjects of the experiment are asked to tactilely, visually, or tactilely and visually observe a three-dimensional object, create descriptions of its composition, and to remake it based on their experience of it using plastic materials. After the execution of the experiment, I analyze twenty-one reproductions of the original object; I point to ways in which touch can detect scale and proportions more accurately than vision, while vision can detect spatial components more efficiently than touch; I then propose ways in which this series of experiments can lead to the creation of new design and making tools.
keywords education society & culture; computational / artistic culture;s hybrid practices; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2017_030
id sigradi2017_030
authors de Menezes, Marly; Ricardo Bontempo, Marcelo Falco, Augusto Gottsfritz
year 2017
title A prática da teoria – vivenciando a Internet das Coisas na mobilidade urbana. [The practice of theory - experiencing the Internet of Things in urban mobility.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.214-218
summary This article will present the development of the discipline of Interdisciplinary Project - Digital Design and Internet of Things, taught in the superior course of Digital Design, of Anhembi Morumbi University, through the application of the concepts of Active Methodologies. The principles inherent to projects related to the Internet of Things (IoT) such as efficiency, ease and intelligence, applied to current and future needs of society, will be demonstrated through the work of a group of students who have developed a device directed to the area of urban mobility For the help of users of collective public transportation in the city of São Paulo.
keywords Digital Design, Internet of Things, IoT, Urban Mobility, Teaching
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2017_107
id caadria2017_107
authors Hu, Haojie, Luo, Zixuan, Chen, Yingnan, Bian, Qiuyi and Tong, Ziyu
year 2017
title Integration of Space Syntax into Agent-Based Pedestrian Simulation in Urban Open Space
doi https://doi.org/10.52842/conf.caadria.2017.325
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 325-334
summary MAS can be utilized to analyse macro rules of whole system by simulating a number of active agents. However, simply based on the parameter of specific environment quality and incomplete statistical setting of individual, models of pedestrian traffic in realistic open space have often been imperfect, because the behaviour of people cannot be rationally reflected to the complex characteristic of space. Space Syntax Theory breaks down the space into components and measures each with the straight sight-line of individuals, which can help analyse and quantify pedestrian flow in complicated real-life environment. In this situation, we make an attempt to combine these two in our research, in order to simulate the moving of pedestrian closer to reality. In this paper, Gulou Square, an urban open space close to centre of the city with a large flow of people, is selected as the study site. The results after plenty of simulations and contrast tests can be concluded that with the assistance of Space Syntax Theory, MAS can be more functional solving the problems in sophisticated real-life environment.
keywords Multi-agent system; Space Syntax; Open space; Visibility
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2017_071
id ecaade2017_071
authors Stouffs, Rudi and Hou, Dan
year 2017
title The complexity of formulating design(ing) grammars
doi https://doi.org/10.52842/conf.ecaade.2017.1.401
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 401-410
summary We are concerned with the complexity of formulating rules within a design grammar, i.e., a grammar for designing. Our motivation comes from an active development of a design grammar using railway station design as a demonstration study. In this paper, we identify a number of difficulties that may arise when developing shape rules and present approaches for graphical rule specification that can serve to overcome these difficulties. Specifically, we present examples where drawing shape rules and augmenting these with control conditions or rule constraints offer insufficient support for the rules' intricacies, and propose conventions for drawing and specification that support the explication of these exemplar shape rules, aiming not to overly complicate the drawing and specification process. We borrow from other authors where appropriate, and do not concern ourselves with implementation issues, at this point.
keywords Design grammar; shape grammar; shape rule; graphical depiction
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_138
id acadia17_138
authors Berry, Jaclyn; Park, Kat
year 2017
title A Passive System for Quantifying Indoor Space Utilization
doi https://doi.org/10.52842/conf.acadia.2017.138
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 138-145
summary This paper presents the development of a prototype for a new sensing device for anonymously evaluating space utilization, which includes usage factors such as occupancy levels, congregation and circulation patterns. This work builds on existing methods and technology for measuring building performance, human comfort and occupant experience in post-occupancy evaluations as well as pre-design strategic planning. The ability to collect data related to utilization and occupant experience has increased significantly due to the greater accessibility of sensor systems in recent years. As a result, designers are exploring new methods to empirically verify spatial properties that have traditionally been considered more qualitative in nature. With this premise, this study challenges current strategies that rely heavily on manual data collection and survey reports. The proposed sensing device is designed to supplement the traditional manual method with a new layer of automated, unbiased data that is capable of capturing environmental and social qualities of a given space. In a controlled experiment, the authors found that the data collected from the sensing device can be extrapolated to show how layout, spatial interventions or other design factors affect circulation, congregation, productivity, and occupancy in an office setting. In the future, this sensing device could provide designers with real-time feedback about how their designs influence occupants’ experiences, and thus allow the designers to base what are currently intuition-based decisions on reliable data and evidence.
keywords design methods; information processing; smart buildings; IoT
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_173
id ecaade2017_173
authors Buš, Peter, Hess, Tanja, Treyer, Lukas, Knecht, Katja and Lu, Hangxin
year 2017
title On-site participation linking idea sketches and information technologies - User-driven Customised Environments
doi https://doi.org/10.52842/conf.ecaade.2017.1.543
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 543-550
summary The paper introduces the methodology related to the topic of citizen-driven urban design and revises the idea of on-site participation of end-users, which could prospectively lead to customisation of architectural and urban space in a full-scale. The research in the first phase addresses the engagement of information technologies used for idea sketching in participatory design workshop related to local urban issues in the city of Chur in Switzerland by means of the Skity tool, the sketching on-line platform running on all devices. Skity allows user, which can be individual citizens or a community, to sketch, build, and adapt their ideas for the improvement of an urban locality. The participant is the expert of the locality because he or she lives in this place every day. The content of this paper is focused on the participatory design research project conducted as a study at the ETH Zürich and the Hochschule für Technik und Wirtschaft HTW in Chur in collaboration with Future Cities Laboratory in Singapore, mainly concentrated on the first step of the methodological approach introduced here.
keywords responsive cities; urban mass-customisation; idea sketching; ideation; on-site participation; citizen design science
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_088
id sigradi2017_088
authors Elias, Samira; José Nuno Beirão
year 2017
title As relações determinantes entre Forma Urbana e Urbanidade [The determining relationships between Urban Form and Urbanity]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.611-619
summary This study aims at identifying the determinant factors that form the condition of urbanity in urban space. A set of urbanistic attributes, based on sampled parcels of the urban network, is used for a quanti-qualitative analysis. Calculations based on these attributes are used to identify the indicators that express the performative qualities of the place, thus allowing the evaluation of the correlation between the typological characteristics of form and the qualitative expression of the urban space. This methodology points to the attributes of the urban form that are most strongly related to the concept of urbanity and that positively influence the quality of urban spaces in the Brazilian context. Finally, we compare our observation with those available in the European literature, already well established in these matters.
keywords Urban Form, Urbanity, Urban Space, Urban Attributes, SIG;
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_972406 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002