CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id caadria2017_095
id caadria2017_095
authors Lee, Hyo Jung and Lee, Hyunsoo
year 2017
title Automatic 3D Modeling of Korean Traditional Architecture - Applying Parametric Design
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 231-240
doi https://doi.org/10.52842/conf.caadria.2017.231
summary Korean traditional structure is constructed as prefabrication jointed in largely characterized by its unique components under the specific rules of assembly and proportion. This point is a double-edges sword. Because, while various shapes and sizes of components based upon an objected-oriented form appear the potential possibility of producing changeable prototypes to build up, these various characters of components and several jointed methods has made difficulties to handle. Accordingly, an automatic 3D modeling algorithm is focused on the methodology of changeable prototypes of Korean Traditional architecture keeping traditional jointed methods with setting various characters of components
keywords Korean traditional structure; Parametric design ; Generative three dimensional modeling ; Hanok.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_72
id acadia17_72
authors Alfaiate, Pedro; Caetano, In?s; Leit?o, António
year 2017
title Luna Moth: Supporting Creativity in the Cloud
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 72-81
doi https://doi.org/10.52842/conf.acadia.2017.072
summary Algorithmic design allows architects to design using a programming-based approach. Current algorithmic design environments are based on existing computer-aided design applications or building information modeling applications, such as AutoCAD, Rhinoceros 3D, or Revit, which, due to their complexity, fail to give architects the immediate feedback they need to explore algorithmic design. In addition, they do not address the current trend of moving applications to the cloud to improve their availability. To address these problems, we propose a software architecture for an algorithmic design integrated development environment (IDE), based on web technologies, that is more interactive than competing algorithmic design IDEs. Besides providing an intuitive editing interface which facilitates programming tasks for architects, its performance can be an order of magnitude faster than current algorithmic design IDEs, thus supporting real-time feedback with more complex algorithmic design programs. Moreover, our solution also allows architects to export the generated model to their preferred computer-aided design applications. This results in an algorithmic design environment that is accessible from any computer, while offering an interactive editing environment that integrates into the architect’s workflow.
keywords design methods; information processing; generative system; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_110
id acadia17_110
authors Arnowitz, Ethan; Morse, Christopher; Greenberg, Donald P.
year 2017
title vSpline: Physical Design and the Perception of Scale in Virtual Reality
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 110-117
doi https://doi.org/10.52842/conf.acadia.2017.110
summary Virtual reality provides a heightened sense of immersion and spatial awareness that provides a unique opportunity for designers to perceive and evaluate scale and space. At the same time, traditional sketches and small-size physical models provide tactile feedback that allow designers to create, comprehend, and explore complex geometric relationships. Through the development of vSpline, a modeling application for virtual reality, we explore the potential for design within a virtual spatial environment to blur the boundaries between digital and physical stages of design, and seek to combine the best of both virtual and analog worlds. By using spline-based closed meshes created directly in three-dimensional space, our software provides the capabilities to design, modify, and save the information in the virtual world and seamlessly convert the data to evaluate the printing of 3D physical models. We identify and discuss important questions that arise regarding relationships of perception of scale, digital-to-physical domains, and new methods of input and manipulation within a 3D immersive space.
keywords design methods; information processing; hci; vr; ar; mixed reality; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_031
id ecaade2017_031
authors Castelo Branco, Renata and Leit?o, António
year 2017
title Integrated Algorithmic Design - A single-script approach for multiple design tasks
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
doi https://doi.org/10.52842/conf.ecaade.2017.1.729
summary Many great architectural endeavors today engage in a multi software approach, as each specialty involved needs a different software, and different task required from the architect, such as 3D modeling, analysis or rendering, also benefit from the use of different tools. Combining them in the same process is not always a successful endeavor. A more effective portability mechanism is needed, and Algorithmic Design (AD) has the potential to become one. This paper explores the advantages of the algorithmic approach to the design process, and proposes a methodology capable of integrating the different tools and paradigms currently used in architecture. The methodology is based on the development of a computer program that describes not only the intended model, but also additional tasks, such as the required analysis and rendering. It takes advantage of CAD, BIM and analysis tools, with little effort when it comes to the transition between them.
keywords Algorithmic Design; CAD; BIM; Analysis tools
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
doi https://doi.org/10.52842/conf.caadria.2017.841
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia17_318
id acadia17_318
authors Khan, Sumbul; Tunçer, Bige
year 2017
title Intuitive and Effective Gestures for Conceptual Architectural Design: An Analysis Of User Elicited Hand Gestures For 3D CAD Modeling
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 318- 323
doi https://doi.org/10.52842/conf.acadia.2017.318
summary Gesture-based natural interfaces necessitate research into gestures that are intuitive for designers and effective for natural interaction. Intuitive knowledge is significant for conceptual design as it reduces time taken to complete tasks and improves usability of products. In a previously conducted experiment, we elicited gestures for 3D CAD modeling tasks for conceptual architectural design. In this study, we present a preliminary analysis of intuitiveness scores of gestures and evaluators’ ratings to analyze which gestures were more intuitive and effective for CAD manipulation tasks. Results show that gestures with high intuitive scores were not necessarily rated as effective by evaluators and that bimanual symmetric gestures consistently scored high for both intuitiveness and effectiveness. Based on our findings we give recommendations for the design of gesture-based CAD modeling systems for single and multiple users.
keywords design methods; information processing; HCI; collaboration; art and technology
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_252
id ecaade2017_252
authors Sharif, Shani, Agrawal, Varun and Sweet, Larry
year 2017
title Adaptive Industrial Robot Control for Designers
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 151-158
doi https://doi.org/10.52842/conf.ecaade.2017.2.151
summary In this research, we present a system to allow designers to adaptively control an industrial robot from within a 3D modeling environment, for the purpose of real time feedback with respect to visual imagery of the object as well as robot pose during the fabrication process. Our work uses the Kuka industrial robots due to their capability in fabrication and programmability, and the Rhino 3D modeling software with the Grasshopper plugin which allows for visual programming for designers. A Microsoft Kinect sensor is used to provide visual feedback of the part during the fabrication process. We present the methodology used to develop the system, explaining various design and architecture choices made to allow for easy use of our system, while ensuring our system is open to further extension. We also show qualitative results of the fabrication process performed using our system in order to validate that our proposed system improves the interaction and collaboration between designer and robot when performing the task, in contrast to the iterative process that is generally followed.
keywords Human-robot collaboration; Robotic fabrication; Adaptive control; Feedback
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_600
id acadia17_600
authors Tabrizian, Payam; Harmon, Brendan; Petrasova, Anna; Petras, Vaclav; Mitasova, Helena; Meentemeyer, Ross
year 2017
title Tangible Immersion for Ecological Design
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 600- 609
doi https://doi.org/10.52842/conf.acadia.2017.600
summary We introduce tangible immersion—virtual reality coupled with tangible interaction—to foster interdisciplinary collaboration in a critical yet creative design process. Integrating tangible, embodied interaction with geospatial modeling and immersive virtual environments (IVE) can make 3D modeling fast and natural, while enhancing it with realistic graphics and quantitative analytics. We have developed Tangible Landscape, a technology that links a physical model with a geographic information system and 3D-modeling platform through a real-time cycle of interaction, 3D scanning, geospatial computation, and 3D rendering. With this technology, landscape architects, other professionals, and the public can collaboratively explore design alternatives through an iterative process of intuitive ideation, geocomputational analysis, realistic rendering, and critical analysis. This is demonstrated with a test case for interdisciplinary problem-solving, in which a landscape architect and geoscientist use Tangible Landscape to collaboratively design landforms, hydrologic systems, planting, and a trail network for a brownfield site. Using this tangible immersive environment they rapidly explored alternative scenarios. We discuss how the participants used real-time analytics to collaboratively assess trade-offs between environmental and experiential factors, balancing landscape complexity, biodiversity, remediation capacity, and aesthetics. Together they explored how the relationship between landforms and natural processes affected the performance of the designed landscape. Technologies that couple tangible geospatial modeling with IVEs have the potential to transform the design process by breaking down disciplinary boundaries, but may also offer new ways to imagine space and democratize design.
keywords design methods; information processing; simulation & optimization; collaboration; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:56

_id cf2017_051
id cf2017_051
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Parameterisation of Semantic 3D City Models for Urban Design Optimisation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 51-65.
summary We present an auto-parameterisation tool, implemented in Python, that takes in a semantic model, in CityGML format, and outputs a parametric model. The parametric model is then used for design optimisation of solar availability and urban ventilation potential. We demonstrate the tool by parameterising a CityGML model regarding building height, orientation and position and then integrate the parametric model into an optimisation process. For example, the tool parameterises the orientation of a design by assigning each building an orientation parameter. The parameter takes in a normalised value from an optimisation algorithm, maps the normalised value to a rotation value and rotates the buildings. The solar and ventilation performances of the rotated design is then evaluated. Based on the evaluation results, the optimisation algorithm then searches through the parameter values to achieve the optimal performances. The demonstrations show that the tool eliminates the need to set up a parametric model manually, thus making optimisation more accessible to designers.
keywords City Information Modelling, Conceptual Urban Design, Parametric Modelling, Performance-Based Urban Design
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_084
id cf2017_084
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Generation of Semantic 3D City Models from Conceptual Massing Models
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 84-100.
summary We present a workflow to automatically generate semantic 3D city models from conceptual massing models. In the workflow, the massing design is exported as a Collada file. The auto-conversion method, implemented as a Python library, identifies city objects by analysing the relationships between the geometries in the Collada file. For example, if the analysis shows that a closed poly surface satisfies certain geometrical relationships, it is automatically converted to a building. The advantage of this workflow is that no extra modelling effort is required, provided the designers are consistent in the geometrical relationships while modelling their massing design. We will demonstrate the feasibility of the workflow using three examples of increasing complexity. With the success of the demonstrations, we envision the utoconversion of massing models into semantic models will facilitate the sharing of city models between domain-specific experts and enhance communications in the urban design process.
keywords Interoperability, GIS, City Information Modelling, Conceptual Urban Design, Collaborative Urban Design Process
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2017_042
id caadria2017_042
authors Coorey, Ben and Coorey, Anycie
year 2017
title Generating Urban Form
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 261-269
doi https://doi.org/10.52842/conf.caadria.2017.261
summary Modern design of urban forms is venturing towards performative, site-specific architecture that are formed according to the attributes of its urban context. Parametric modelling techniques offer designers the ability to embed generative mechanisms into the design process to allow performance based design. This paper focuses on the development of a synthesis model that generates an Urban Form schema using computational design principles. The design system illustrates a rule-based systematic approach to urban form generation and is a precursor to the automatic exploration of urban forms based on design analytics and evaluation of urban metrics. The role of the architect begins to shift from the designer of objects to the designer of processes with urban planning following a trajectory of data-generated and contextual specific design.
keywords Parametric Modelling; Urban Modelling; Scripting; Urban Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_308
id acadia17_308
authors Joyce, Sam Conrad; Ibrahim, Nazim
year 2017
title Exploring the Evolution of Meta Parametric Models
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 308- 317
doi https://doi.org/10.52842/conf.acadia.2017.308
summary Parametric associative logic can describe complex design scenarios but are typically non-trivial and time consuming to develop. Optimization is being widely applied in many fields to find high-performing solutions to objective design needs, and this is being extended further to include user input to satisfy subjective preferences. However, whilst conventional optimization approaches can set good parameters for a model, they cannot currently improve the underlying logic defined by the associative topology of the model, leaving it limited to predefined domain of designs. This work looks at the application of Cartesian Genetic Programming (CGP) as a method for allowing the automatic generation, combination and modification of valid parametric models, including topology. This has value as it allows for a much greater range of solutions, and potentially computational "creativity," as it can develop unique and surprising solutions. However, the application of a genome-based definition and evolutionary optimization, respectively, to describe parametric models and develop better models for a problem, introduce many unknowns into the model generation process. This paper explains CGP as applied to parametric design and investigates the difference between using mating, mutating and both strategies together as a way of combining aspects of parent models, under selection by a genetic algorithm under random, objective and user (Interactive GA) preferences. We look into how this effects the resultant overiterated interaction in relation to both the geometry and the parametric model.
keywords design methods; information processing; generative system; data visualization; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:52

_id sigradi2017_061
id sigradi2017_061
authors Lobos Calquín, Danny Alfredo; Lorena Del Pilar Silva Castillo
year 2017
title BIM y CES. Dos agendas de gobierno unidas a través de las Tecnologías Digitales [BIM and CES. Two government agendas brought together through ICT tools]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.417-422
summary The paper discusses the intersection of two main agendas for Chilean governments that are BIM (Building Information Modeling) and BEAM (Building Environmental Assessment Methods). It shows the state-of-the-art in both fields in Chile as well as in the world, it discusses some previous efforts of integration; it found some new opportunities for collaboration and finally proposes a new framework that brings together BIM and BEAM. The development of the method includes BIM Models, databases and spread sheets for building energy Certification, it finally provides a semi-automatic environment where architects model their design in BIM and this Information is used as an input to the certification process. Potentials and risk of this method are discussed.
keywords BIM (Building Information Modeling); BPS (Building Performance Simulation); BEAM (Building Environmental Assessment Methods); Architectural Design; Interoperability.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201715404
id ijac201715404
authors Miranda, Pablo
year 2017
title Computer utterances: Sequence and event in digital architecture
source International Journal of Architectural Computing vol. 15 - no. 4, 268-284
summary Barely a month before the end of World War II, a technical report begun circulating among allied scientists: the ‘First Draft of a Report on the EDVAC’, attributed to John von Neumann, described for the first time the design and implementation of the earliest stored-program computer. The ‘First Draft’ became the template followed by subsequent British and American computers, establishing the standard characteristics of most computing machines to date. This article looks at how the material and design choices described in this report influenced architecture, as it set up the technological matrix onto which a discipline relying on a tradition of drawn geometry would be eventually completely remediated. It consists of two parts: first, a theoretical section, analysing the repercussions for architecture of the type of computer laid out in the ‘First Draft’. Second, a description of a design experiment, a sort of information furniture, that tests and exemplifies some of the observations from the first section. This experiment examines the possibilities of an architecture that, moving beyond geometric representations, uses instead the programming of events as its rationale. The structure of this article reflects a methodology in which theoretical formulation and design experiments proceed in parallel. The theoretical investigation proposes concepts that can be tested and refined through design and conversely design work determines and encourages technical, critical and historical research. This relation is dialogical: theoretical investigation is not simply a rationalisation and explanation of earlier design work; inversely, the role of design is not just to illustrate previously formulated concepts. Both design and theorisation are interdependent but autonomous in their parallel development.
keywords Stored-program, Turing machine, Electronic Discrete Variable Automatic Computer, inscription/incorporation, geometry, sequence, event, information furniture, tangible interface, calm technoloy
series journal
email
last changed 2019/08/07 14:03

_id sigradi2017_070
id sigradi2017_070
authors Borda, Adriane
year 2017
title Tactile narratives about an architecture’s ornaments
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.479-485
summary This study experiments a process of production of tactile representations of architectural elements of a nineteenth century mansion, house to a university museum: Museu do Doce, Pelotas, RS. The Museum uses the concept of Universal Design to guide its direct and/or mediated communication solutions. The house is distinguished by ceilings of ornamental stuccoes, evidently perceived only by the sense of sight. To describe them, a set of representations is being produced, using 3D scanning and digital fabrication technologies, using formal decomposition, and different scales, to construct a narrative to be understood by touching.
keywords Tactile models; Universal Design; Architectural heritage; Representation technologies; Stuccoes.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2017_055
id caadria2017_055
authors Caetano, In?s and Leit?o, António
year 2017
title Integration of an Algorithmic BIM Approach in a Traditional Architecture Studio
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 633-642
doi https://doi.org/10.52842/conf.caadria.2017.633
summary Algorithmic BIM combines BIM and Generative Design (GD), merging the potentialities of both approaches. In this paper we describe the design process of a set of parametric facades developed using Algorithmic-BIM, and how this approach was integrated into the design workflow of two architectural studios. We demonstrate how the integration of GD together with BIM influenced the whole design process and also the selection of the final solution. Some of the limitations found during the entire process are also addressed in the paper, such as tight deadlines and financial constraints. Finally, we explain the pros and cons of using this design method compared to a traditional BIM approach, and we discuss the implementation of this paradigm in a traditional design practice. This work was developed using Rosetta, an IDE for Generative Design that supports scripts using different programming languages and allows the generation and edition of 3D models in a variety of CAD and BIM applications. The result of this work is an information model of three parametric facades for a residential building, from which we can extract material quantities and construction performance tests.
keywords Generative design; collaborative design; CAD-BIM portability; parametric facade design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2017_002
id ecaade2017_002
authors Costa, Fábio, Eloy, Sara, Sales Dias, Miguel and Lopes, Mariana
year 2017
title ARch4models - A tool to augment physical scale models
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-718
doi https://doi.org/10.52842/conf.ecaade.2017.1.711
summary This paper focus on the development and evaluation of a computer tool that enriches physical scale models of buildings, which are commonly used during architecture and civil engineering design processes. The main goal of this work is to enable designers, namely architects, to use the affordances of the physical scale models, by enhancing them with digital characteristics that can be easily changed, allowing an enriched interaction of the designer with such models. Our in-house developed Augmented Reality tool, referred to as ARch4models, augments the user experience with visual features and interactive capabilities, not possible to accomplish with physical models (see this video in https://goo.gl/5zbdTQ). The tool allows the coherent registration between the real and the digital in the same space. Satisfaction evaluation studies were conducted that have shown that ARch4models improves the building design process when compared with a traditional methodology employing solely physical scale models.
keywords augmented reality; architecture; physical scale model; 3D model; AEC design process
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
doi https://doi.org/10.52842/conf.caadria.2017.467
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_661459 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002