CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id ecaade2017_050
id ecaade2017_050
authors Cursi, Stefano, Simeone, Davide and Coraglia, Ugo Maria
year 2017
title An ontology-based platform for BIM semantic enrichment
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 649-656
doi https://doi.org/10.52842/conf.ecaade.2017.2.649
summary In its application to design phases, BIM has progressively shown limits in terms of semantic representation and efficiency of supporting collaboration. This paper investigates the possibilities related to BIM representation enrichment through semantic web approaches, in order to represent knowledge rather than information and presents a prototypal application oriented to the integration of the informative model of the building with a knowledge base developed by means of ontologies, providing a more structured system of interconnected information.
keywords BIM; Semantic enrichment; Knowledge Management; Ontologies
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2017_132
id caadria2017_132
authors Feist, Sofia, Ferreira, Bruno and Leit?o, António
year 2017
title Collaborative Algorithmic-based Building Information Modelling
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 613-622
doi https://doi.org/10.52842/conf.caadria.2017.613
summary Algorithmic-based Building Information Modelling (A-BIM) allows the development of BIM models through algorithms. In a collaborative environment, A-BIM requires management strategies to deal with concurrent development of architectural projects. However, despite there being several tools that support this type of collaborative work, they are not appropriate for A-BIM because: (1) they track changes in the generated model instead of the code where the changes originate from, and (2) they are vendor-specific while A-BIM models might be generated for different BIM applications. In this paper, we discuss the use of Version Control (VC) for project management and concurrent development of A-BIM projects. We evaluate VC for A-BIM through a series of scenarios in the context of a case study.
keywords Algorithmic Design; Programming; Algorithmic-based Building Information Modelling; Version Control; Collaborative Design
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2017_297
id cf2017_297
authors He, Yi; Schnabel, Marc Aurel; Chen, Rong; Wang, Ning
year 2017
title A Comprehensive Application of BIM Modelling for Semi-underground Public Architecture: A Study for Tiantian Square Complex, Wuhan, China
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 297-308.
summary The paper presents research on how Building Information Modelling (BIM) can be applied comprehensively throughout the design of an architectural project. A practical method based on BIM models that help to deal with multidisciplinary issues by integrating the design information from different sources, collaborators and project stages is formulated by adopting existing available tools. The ‘Tiantian Square’ building project in Wuhan, China combines a subway station with a commercial hug. According to the project’s size and complexity, our study focuses on the multiple cooperation of professionals from different backgrounds, including the departments of architectural design, structure (civil engineering), HVAC (Heating, Ventilation and Air Conditioning), water supply and drainage, and electrics and sustainable design. Our paper presents how the BIM model bridges between various simulation platforms through our technical system and management, including steps of transformation, simplification, analysis, reaction and improvement. Our research has helped to improve the overall efficiency and quality of the project. We generated a successful analysis-design approach for the initial design stages, which does not require in-depth analysis. It is a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Finally, we discuss how the coordination of different department becomes a crucial factor as we look forward to a more open, communicative and inter-relational design and development process.
keywords BIM, Subway Complex, Simulation, Semi-Underground Architecture
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_404
id acadia17_404
authors Miller, Nathan; Stasiuk, David
year 2017
title A Novel Mesh-Based Workflow for Complex Geometry in BIM
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 404- 413
doi https://doi.org/10.52842/conf.acadia.2017.404
summary Various well-established digital modeling software platforms enable architectural design teams to rapidly sculpt and iterate over complex, doubly curved, and organic geometries. However, the software platforms that are used to author such geometries are rarely the same that are used for later-stage project development and delivery. For these phases of project execution, projects of even modest complexity are managed through building information modeling (BIM) software. Yet most BIM solutions are not suitable for natively handling the design of geometrically complex forms, failing to provide lightweight, responsive, or flexible authoring interfaces. A further complication is their inability to readily import or integrate any complex geometric elements or assemblies generated elsewhere. The development of improvements to interoperability between authoring and production software therefore remains an important goal in contemporary architectural practice. This paper describes a practical methodology that then engages various Application Programming Interfaces (APIs) and open-source programming tools to address the problem of interoperability for complex geometry in BIM. Specifically, it identifies meshes as a well-positioned data structure for use within the context of preparing complex design geometry for BIM production. We describe a novel technique for the efficient interoperability of complex NURBS poly-surface objects from one authoring platform, employing design meshes that cleanly capture not just geometry, but also user and procedurally derived descriptive data elements for advanced representation and analysis within a BIM production environment.
keywords design methods; information processing; BIM
series ACADIA
email
last changed 2022/06/07 07:58

_id caadria2017_017
id caadria2017_017
authors Park, Hyejin, Lee, Seunghyun, Kim, Eonyong and Choo, Seungyeon
year 2017
title A Proposal for Building Safety Diagnosis Processes using BIM-based Reverse Engineering Technology
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 673-682
doi https://doi.org/10.52842/conf.caadria.2017.673
summary Recently, the aging of buildings is accelerating around the world. In line with this, architectural structures constructed long time ago require life extension and ongoing management and protection for improvement, because they are too deteriorated. In particular, since structural safety inspection and analysis in building is very important, 'DFS (Design For Safety)'system has been introduced and conducted at the national level in Korea for the whole building life cycle management system encompassing the entire design, work commencement, construction, and completion stages. However, we do not have a system ranging from repair and reinforcement work plans in doing safety design, structural inspection and analysis to ongoing safety inspection. Therefore, it is necessary to establish a system to produce and share integrated information and conduct a research to manage architectural structure across the whole life cycle. Accordingly, this study aims to propose BIM-based reverse engineering technology for generating a safety management model based on laser scanner, verify the investigation items to be utilized of the design when building safety, and seek ways to utilize them for safety design.
keywords BIM; reverse engineering; building safety diagnosis; laser scanning; design for safety
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2017_195
id ecaade2017_195
authors Collins, Jeffrey and Gentry, Russell
year 2017
title KBAD - Knowledge Base for Architectural Detailing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 657-666
doi https://doi.org/10.52842/conf.ecaade.2017.2.657
summary This paper examines the current state of the conventional Design-Bid-Build project, wherein design intentions are manually translated to construction directives by subcontractors based on industry-specific details. This process exacerbates a dilemma in design and construction; that often the designer may be unaware of certain details that are involved in fabricating and assembling building components. Research for Knowledge Base for Architectural Detailing (KBAD) proposes a system that takes advantage of current CAD software and programming language, bringing together the information provided by and important to the design team with the data required by the subcontractor to accurately produce architectural components, during the design phases of a project. The trade of architectural precast concrete is used to demonstrate the potential of such a system. Solid modeling, visual scripting, and programming language techniques working towards KBAD are described. Possible variations of architectural precast concrete panels, detailed with window openings, reveals, and embed plates, are presented.
keywords BIM; HCI; Collaboration
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_100
id ecaade2017_100
authors Daniotti, Bruno, Lupica Spagnolo, Sonia, Mirarchi, Claudio, Pasini, Daniela and Pavan, Alberto
year 2017
title An Italian BIM-based portal to support collaborative design and construction - A case study on an enhanced use of information relying on a classification system and computational technical datasheets
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 67-76
doi https://doi.org/10.52842/conf.ecaade.2017.2.067
summary A great amount of information needs to be managed along the building life cycle in order to fulfil building codes, standards and regulations, client and user requirements. However, a lack of transparency in the information management and a lack of communication between stakeholders often bring to the adoption of solutions in the design process that do not meet the original requirements. Therefore, an ordered structure for information improves its storage, enhancing its visibility, traceability, usability and re-usability. In addition, for public works contracts and design contests, the use of specific electronic tools, such as building information electronic modelling tools, is often required for the information management. The paper presents the efforts devoted within the Italian building sector for proposing a standardized structure and developing tools for collecting, sharing and exchanging information between stakeholders involved in different stages of the building process. An enhanced use of information relying on the adoption of the standardized structure of information is presented, proposing dedicated applications for automating the process of information fruition.
keywords BIM-based portal; Standardized information; Computational technical datasheets
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_127
id caadria2017_127
authors Herr, Christiane M. and Fischer, Thomas
year 2017
title Challenges to the Adoption of BIM in the Chinese AEC Industries - An Extended BIM Adoption Model
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 179-187
doi https://doi.org/10.52842/conf.caadria.2017.179
summary Despite strong encouragement by government guidelines and promoting efforts by the software industry, BIM is adopted at relatively slow speeds in construction industries across the world. The study presented in this paper examines the challenges to BIM adoption faced in particular in the Chinese construction industry across architecture, engineering and construction. We review recent literature addressing BIM adoption, develop a critique of common approaches to BIM adoption, and then propose our own, extended model to describe and assess BIM adoption processes. To demonstrate the model's suitability to evaluate temporal and collaborative dimensions during BIM adoption processes, we present results from a detailed survey we conducted among Chinese AEC professionals based on the extended model of BIM adoption and discuss how current Chinese BIM adoption in practice diverges from overseas BIM adoption strategies.
keywords BIM; Chinese construction practice; BIM workflow; cross-disciplinary collaboration; AEC
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia17_284
id acadia17_284
authors Hu, Zhengrong; Park, Ju Hong
year 2017
title HalO [Indoor Positioning Mobile Platform]: A Data-Driven, Indoor-Positioning System With Bluetooth Low Energy Technology To Datafy Indoor Circulation And Classify Social Gathering Patterns For Assisting Post Occupancy Evaluation
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 284-291
doi https://doi.org/10.52842/conf.acadia.2017.284
summary Post-Occupancy Evaluation (POE) as an integrated field between architecture and sociology has created practical guidelines for evaluating indoor human behavior within a built environment. This research builds on recent attempts to integrate datafication and machine learning into POE practices that may one day assist Building Information Modeling (BIM) and multi-agent modeling. This research is based on two premises: 1) that the proliferation of Bluetooth Low Energy (BLE) technology allows us to collect a building user’s data cost-effectively and 2) that the growing application of machine learning algorithms allows us to process, analyze and synthesize data efficiently. This study illustrates that the mobile platform HalO can serve as a generic tool for datafication and automation of data analysis of the movement of a building user. In this research, the iOS mobile application HalO, combined with BLE beacons enable building providers (architects, developers, engineers and facility managers etc.) to collect the user’s indoor location data. Triangulation was used to pinpoint the user’s indoor positions, and k-means clustering was applied to classify users into different gathering groups. Through four research procedures—Design Intention Analysis, Data Collection, Data Storage and Data Analysis—the visualized and classified data helps building providers to better evaluate building performance, optimize building operations and improve the accuracy of simulations.
keywords design methods; information processing; data mining; IoT; AI; machine learning
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2017_062
id caadria2017_062
authors Ji, Seung Yeul, Kim, Mi Kyoung and Jun, Han Jong
year 2017
title Campus Space Management Using a Mobile BIM-based Augmented Reality System
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 105-114
doi https://doi.org/10.52842/conf.caadria.2017.105
summary In South Korea, the changing paradigm of family composition toward single-person households and nuclear families has caused the decrease in number of students, which has led to the need for change in the qualitative, rather than quantitative, management of spaces and facilities on university campuses. In particular, since 2005, the merging of universities have accelerated, which has brought up the need for a system that facilitates the management of integrated university systems. Accordingly, universities now require efficient system operation based on three-dimensional and data visualization, unlike the document-based management of facilities and spaces in the past. Users lack a sense of responsibility for public facilities, causing difficulties such as energy waste and frequent movement, as well as damage and theft of goods. This study aims to form an AR-based interface using the ANPR algorithm, a computer vision technique, and the position-based data of the GPS. It also aims to build a campus space management system to overcome the limitations of current systems and to effectively and systematically manage integrated building data. In addition, for module test verification, the prototype is applied to actual campus spaces, and additional demands for campus space management in the AR application are identified and organized.
keywords augmented reality; Campus space management; BIM; CAFM (computer-aided facilities management); user experience (UX)
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2017_349
id cf2017_349
authors Kim, Eonyong; Kim, Kibum; Choo, Seungyeon; Ryu, Jikeun
year 2017
title Rule-based Security Planning System for Practical Application
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 349-359.
summary Security planning is a vital part of the operation and management phase in a building’s life cycle. Ideally, this will be addressed during the building design phase. However, reality often differs from this ideal. In the real world, information such as floor plans tend to insufficiently describe or imperfectly match physical buildings, and must be surveyed and re-worked during security planning. Because of this, security companies require two kinds of staff: those in the security business and those in charge of planning, including floor plan verification. This research focused on creating an efficient way to help staff in this work environment develop a system of security planning for buildings and facilities using a rule-based approach in a tailormade CAD system. In this research, we developed a new 3D CAD system for desktops and mobile devices, which specializes in security planning using a game-engine. To avoid errors during security planning, a rule-based check system was developed and integrated into the CAD system. The rule-set of this rule base was built from the security planning manual, including guidelines on equipment layout and wiring in various situations, which could then be used in the development of an automated check. This research describes the method of system development and final results.
keywords Security Planning, Operation and Management, Rule Base, BIM, CAD
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_135
id caadria2017_135
authors Kim, Hayan, Lee, Jin-Kook, Shin, Jaeyoung and Choi, Jungsik
year 2017
title BIM-Supported Visual Language to Define Building Design Regulations
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 603-612
doi https://doi.org/10.52842/conf.caadria.2017.603
summary Growing number of Building Information Modeling (BIM) applications have supported the automated assessment of building design and its quality in the early phase of design. For increasing the accuracy and fineness of assessment, rule interpretations require logical base and standardization of analysis process. Therefore, some government-funded research projects have focused on this rule-making process separated from the rule-checking process. Specifically, KBimLogic is a logic rule-based mechanism designed for the building permit related rules in Korea Building Act sentences. As a com-puter-readable definition of a rule, KBimCode has been developed to be executed in actual rule-checking software. The limitation of such code is the visibility to the rule experts who are usually non- or novice programmers. This paper describes much intuitive way of defining and generating KBimCode through KBim Visual Language. User can easily query the building element and method through the immanent connection with KBimLogic database. By using the KBim Visual Language, various types of rules written in design guideline, international standardization, and national acts can be easily interpreted into computer-readable formats such as KBimCode in order to proceed with the automated rule-checking.
keywords BIM (Building Information Modeling); Visual Language; Korea Building Act; Automated Design Process; Rule-making
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_054
id caadria2017_054
authors Leit?o, António, Castelo Branco, Renata and Cardoso, Carmo
year 2017
title Algorithmic-Based Analysis - Design and Analysis in a Multi Back-end Generative Tool
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 137-146
doi https://doi.org/10.52842/conf.caadria.2017.137
summary Estimating a building's performance is part of the engineering and architecture discipline. Nowadays, this estimation is done using analysis tools. In many cases, these analysis tools require specialized building models that are simplifications of the actual models. Unfortunately, the adaptations that need to be done to an existing model are tiresome and make the architect less willing to evaluate variations of the building design. Moreover, in the case of buildings with complex shapes, the analyses tend to be less reliable. These problems also occur when algorithmic approaches are used to generate the building design, as the algorithmic script needs to be adapted to satisfy the requirements of the analysis tool, or the manual adaptation of the generated model needs to be repeated each time the script is executed. To solve these issues we propose Algorithmic-Based Analysis. This is a Generative Design method that, utilizing a single algorithmic-based representation of a building, can generate not only the traditional CAD or BIM model, but also specialized models for use in different kinds of analysis.
keywords Generative Design; Building Performance; Analysis; Performance-based Design; Algorithmic-Based Analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2017_094
id sigradi2017_094
authors Nacimento Firme, Eduardo; Max Lira Veras Xavier de Andrade
year 2017
title Projeto Colaborativo, Realidade Vitual e BIM: Uma experiencia de participação dos clientes nas decisões dos projetos de arquitetura [Collaborative project, Virtual Reality and BIM: An experience of customer participation in the decisions of architectural projects]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.651-657
summary This paper presents an undergraduate work, still under development that discusses and implements a virtual reality based collaboration system to be used during the design stage of the architectural project. Tests are currently being developed to define the form of interaction in an immersive virtual environment. This system will enable the client to be immersed in a virtual environment and be able to change it according to their needs and tastes, effectively participating in the project process.
keywords Collaborative design; Virtual Reality; BIM; Immersive virtual environments, Architecture Design.
series SIGRADI
email
last changed 2021/03/28 19:59

_id cf2017_360
id cf2017_360
authors Ofluo?lu, Salih
year 2017
title BIM-based Interdisciplinary Collaborations in a Student Project Competition
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 360-373.
summary Architecture is a profession that requires collaboration among professionals from various fields. Despite the important nature of these interdisciplinary collaborations, architecture students rarely obtain the opportunity to learn about the work areas of other stakeholders and the practice of working together. In all sectors there is a growing need for professionals who possess in-depth knowledge in their own disciplines and also develop an understanding about other related disciplines. In a setting of a student project competition, this article examines how students from various AEC fields collaborate using BIM as a common data environment and emphasizes several considerations for implementing interdisciplinary collaborations in curriculums of architecture schools in students’ perspective.
keywords Interdisciplinary Collaborations, Architectural Design Studio, BIM, Building Information Modeling
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_033
id caadria2017_033
authors Qu, Tengteng, Zang, Wei, Peng, Zhenwei, Liu, Jun, Li, Weiwei, Zhu, Yun, Zhang, Bin and Wang, Yongsheng
year 2017
title Construction Site Monitoring Using UAV Oblique Photogrammetry and BIM Technologies
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 655-662
doi https://doi.org/10.52842/conf.caadria.2017.655
summary Traditional construction site monitoring primarily relies on a human presence. Automated construction progress monitoring is expected to make this process much more efficient and precise. The planned state of construction (as-planned) must be validated by the actual state (as-built) during automated construction progress monitoring. This research uses an integrated application of high-resolution low-altitude UAV (Unmanned Aerial Vehicle) oblique photogrammetry and Building Information Modeling (BIM) technologies for construction site management. A case study was carried out for a renewable energy development program in the JiaDing District of Shanghai, China. A high-resolution 3D model of the construction site acquired by our multi-motor UAV provides data to illustrate the as-built state of the construction program. Comparison of the UAV-based 3D model (as-built) with the BIM-based 3D model (as-planned) for a specific chimney was used for dynamic construction site monitoring. Our results show 3D illustrations of construction progress. This research demonstrates that the BIM technology in conjunction with the use of UAV photogrammetry provides efficient and precise as-built data collection and illustration of construction progress.
keywords Oblique Photogrammetry; UAV; 3D modeling; BIM; construction site monitoring
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2017_026
id ecaade2017_026
authors Renev, Ivan, Chechurin, Leonid and Perlova, Elena
year 2017
title Early design stage automation in Architecture-Engineering-Construction (AEC) projects
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 373-382
doi https://doi.org/10.52842/conf.ecaade.2017.1.373
summary The paper is dedicated to conceptual design stage in AEC projects since this stage defines most of further design and even construction. Conceptual design is less automated and more human depended part of a complex design process. It is reasonable to link modern construction design software with ideas generation techniques in order to enhance and automate design creativity and effectiveness. In the article we propose computer-aided automation of searching for new conceptual ideas and nontrivial solutions during early design stage in AEC projects using such TRIZ tools as Function Modelling and Trimming in BIM technology. For description of our approach we consider framed buildings.
keywords TRIZ; BIM; AEC; Function analysis; Trimming
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_163
id ecaade2017_163
authors S?rensen, Jesper Bendix and Svidt, Kjeld
year 2017
title BIM-based Multiuser Collaborative Virtual Environments for end user involvement
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 111-118
doi https://doi.org/10.52842/conf.ecaade.2017.1.111
summary This paper examines the potential of utilizing virtual mock-ups in end user involvement processes. To access if virtual mock-ups can optimize existing processes, current workflows using physical full-scale mock-ups on several projects are explored. Requirements regarding the traditional workflows are captured through a series of interviews and observational studies. The identified use hereof is then analyzed and consolidated into system requirements and visions of a potential virtual supplement. Based on the identified requirements, a live prototype is developed supporting multiuser experiences in interactive environments through multiple and various devices such as CAVEs, HMD´s and touch devices supporting multi touch co-creation. Finally, the prototype is tested together with end users in ongoing projects to validate the potential of virtual mock-ups and to further detail the requirements to such a system.
keywords User Involvement; Virtual full-scale Mock-ups; Virtual Reality; Co-creation
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2017_029
id caadria2017_029
authors Sun, Zheng and Cao, Yong Kang
year 2017
title Applications of Integrated Digital Technologies for Surveying Tibetan Architectural Heritage:Three Years of Experiences
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 663-672
doi https://doi.org/10.52842/conf.caadria.2017.663
summary Absence of reliable and accurate surveying of Tibetan architectural heritage has long been a major constraint for architects, architectural historians and archeologists working in that region. Due to distinctive geographical environment and architectural typology, unique surveying technologies are required in Tibet. In the last three years, integrated digital surveying technologies are applied to architectural heritage in Gyantse, a Tibetan city. The aim of the surveying is to document and analyze local architectural heritage for potential technical intervention such as consolidation, restoration and renovation. Key technical issues ranging from reliability of consumer-level UAV to BIM-based platform are presented in the article. The conclusions are that digital technologies greatly improve architectural heritage surveying in Tibet in terms of accuracy, efficiency and versatility. Future works will be addressed in more robust algorithms for points cloud semantic segmentation, change detection of large-scale architectural heritage based on remotely sensed imagery over time, and data exchange and coordination between BIM and GIS, etc.
keywords Architectural heritage; Digital survey; Tibet; UAV; BIM
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_033
id ecaade2017_033
authors Yan, Wei
year 2017
title WP-BIM: Web-based Parametric BIM Towards Online Collaborative Design and Optimization
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 527-534
doi https://doi.org/10.52842/conf.ecaade.2017.2.527
summary We present initial experiments of Web-based Parametric Building Information Modeling (WP-BIM) towards collaborative design, modeling, simulation, and optimization. A new framework that integrates Web-based information technology (WebGL graphics, networking, and Web browsers), and design computing technology (visual programming) into parametric BIM is prototyped for the experiments. The integration of Web technology is going to enable online collaborative and user participatory design. Connected through the Web platform, a BIM model, visual programming-based user interfaces for parametric changes, and an optimization algorithm, which may reside in different servers or local computers in different geographical locations, have the potential to be integrated and working together to resolve design optimization problems, especially if combined with cloud-based performance simulation tools. After future development, this may allow architects, engineers, clients, etc. to collaboratively work on a project with up-to-date building data and different design and simulation tools.
keywords Web-based; Parametric Modeling; BIM; Collaborative Design; Optimization
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_547635 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002