CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 575

_id caadria2017_008
id caadria2017_008
authors Hua, Hao and Jia, Tingli
year 2017
title Fabricating Without CAD Models - Experiments with G-code and KUKA KRL
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 883-892
doi https://doi.org/10.52842/conf.caadria.2017.883
summary This research focuses on the transformation from design to fabrication without CAD models. In contrast to the conventional "design - modeling - fabrication" workflow, which involves multiple software, we experimented with a method of programming the bespoke fabrication process, and consequently defining the artifact. Algebraic models are employed to specify the materialization process carried out by various CNC machines. We used the programming language Java to create machine instructions for 3D printers, milling machines, and robots. In this method, design and production are not two separated processes; rather we regarded them as two aspects of one whole activity. Proficiency in machines and materials could contribute to design innovation.
keywords digital fabrication; computational design; java; G-code; Kuka
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2017_115
id caadria2017_115
authors Araullo, Rebekah and Haeusler, M. Hank
year 2017
title Asymmetrical Double-Notch Connection System in Planar Reciprocal Frame Structures
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 539-548
doi https://doi.org/10.52842/conf.caadria.2017.539
summary Reciprocal Frame Structures (RF) have broad application potentials. Flexible to using small available materials, they span large areas, including varied curvature and doubly-curved forms. Although not many buildings using RF have been constructed to date, records indicate RF efficiencies where timber was widely used in structures predating modern construction. For reasons of adaptability and economy, advances in computation and fabrication precipitated increase in research into RF structures as a contemporary architectural typology. One can observe that linear timber such as rods and bars feature in extensive RF research. However, interest in planar RF has only recently emerged in research. Hence one can argue that planar RF provides depth to explore new design possibilities. This paper contributes to the growing knowledge of planar RF by presenting a design project that demonstrates an approach in notching systems to explore design and structural performance. The design project, the developed design workflow, fabrication, assembly and evaluation are discussed in this paper.
keywords Reciprocal Frame Structures; Space Frames; Computational Design; Digital Fabrication; Deployable Architecture
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_122
id caadria2017_122
authors Chen, Zi-Ru and Liang, Kai-Hsiang
year 2017
title Application of Digital Fabrication Techniques to Reconstruct Ancient Machinery - A Case-study of Su Song's Water-powered Astronomical Clock Tower
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 777-786
doi https://doi.org/10.52842/conf.caadria.2017.777
summary The restoration of ancient machinery involves a number of aspects, including manufacturing procedure, materials, and scales. Portions that cannot be confirmed should be regarded as variable parameters of the reconstructed design, and therefore, there is no single result. The goal of reconstruction is to establish a prototype of ancient machinery with its mechanical engineering techniques and crafts. The problem of this study is how digital fabrication tools used in architectural design can be applied to the reconstruction of ancient machinery with the water-powered armillary and celestial tower as an example. The objective was to synthesize results that comply with historical records in a systematic, modularized, and parameterized manner and consider the feasibility of using modern digital fabrication and materials. With the procedure, we can reduce the difficulty of ancient machinery reconstruction and provide a reference for the reconstruction designs of ancient mechanical technology and crafts, and mass production made of different materials and scales in the future.
keywords Digital fabrication; Ancient mechanisms recovery; Innovative design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2018.2.545
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_298
id acadia17_298
authors Johnson, Jason S.; Gardner, Guy
year 2017
title Pareidolic Formations
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 298- 307
doi https://doi.org/10.52842/conf.acadia.2017.298
summary The use of ornament in public space has been contested throughout history, and attitudes towards the articulation of building surfaces have shifted over time. Antoine Picon has argued that the use of ornament to communicate meaning and identity is returning to a place of cultural prominence. Well-established digital design and fabrication technologies have given rise to projects that integrate performance and aesthetics through the exploitation of form, pattern and ornament. These techniques allow the designer to inscribe and overlay data generated through performance simulation and environmental analysis, and formal relationships and fabrication processes onto materials and spatial fields, creating novel configurations and effects. Operating at a scale between object and building, public art, sculpture and architectural ornament allow for a particular type of interdisciplinary experimentation and hybrid practice. Three recent public art proposals illustrate an approach that composites multiple datasets to generate new relationships between aesthetic, environmental and functional considerations in order to activate public space. The proposals presented here put forward a set of tactics that can be deployed towards embedding overlapping data in public spaces. These proposals use pattern to form and form to pattern workflows as a way to produce multiple potential readings through pareidolia. This paper presents an investigation into how contemporary digital design and fabrication processes can bridge between performance and perception, and how ornament and pattern might be deployed for both formal and performative purposes to help foster a more personalized relationship with the urban spaces we occupy.
keywords education, society & culture; data mining; form finding; education
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia17_392
id acadia17_392
authors Mesa, Olga; Stavric, Milena; Mhatre, Saurabh; Grinham, Jonathan; Norman, Sarah; Sayegh, Allen; Bechthold, Martin
year 2017
title Non-Linear Matters: Auxetic Surfaces
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 392- 403
doi https://doi.org/10.52842/conf.acadia.2017.392
summary Auxetic structures exhibiting non-linear buckling are a prevalent research topic in the material sciences due to the ability to tune their reversible actuation, porosity, and negative Poisson’s ratio. However, the research is limited to feature sizes at scales below 10 mm2, and to date, there are no available efficient design and prototyping methods for architectural designers. Our study develops design principles and workflow methods to transform standard materials into auxetic surfaces at an architectural scale. The auxetic behavior is accomplished through buckling and hinging by subtracting from a homogeneous material to create perforated patterns. The form of the perforations, including shape, scale, and spacing, determines the behavior of multiple compliant "hinges" generating novel patterns that include scaling and tweening transformations. An analytical method was introduced to generate hinge designs in four-fold symmetric structures that approximate non-linear buckling. The digital workflow integrates a parametric geometry model with non-linear finite element analysis (FEA) and physical prototypes to rapidly and accurately design and fabricate auxetic materials. A robotic 6-axis waterjet allowed for rapid production while maintaining needed tolerances. Fabrication methods allowed for spatially complex shaping, thus broadening the design scope of transformative auxetic material systems by including graphical and topographical biases. The work culminated in a large-scale fully actuated and digitally controlled installation. It was comprised of auxetic surfaces that displayed different degrees of porosity, contracting and expanding while actuated electromechanically. The results provide a promising application for the rapid design of non-linear auxetic materials at scales complimentary to architectural products.
keywords material and construction; CAM; prototyping; smart materials; auxetic
series ACADIA
email
last changed 2022/06/07 07:58

_id sigradi2017_059
id sigradi2017_059
authors Naboni, Roberto; Anja Kunic
year 2017
title Design and Additive Manufacturing of Lattice-based Cellular Solids at Building Scale
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.404-410
summary The amounts of material that is being extracted, harvested and consumed in the last decades is increasing tremendously and bringing to the serious problem of resource scarcity. As a direct consequence to this claim, designers are challenged to rethink architecture and develop new ways of confronting with materials. A potential answer to this problem is the exploration of computational logics for architectural design and fabrication inspired by the observation of biological formations. This work explores how the biological model of bone microstructure can be applied to a larger scale architecture that is structurally responsive, by means of computational design and Additive Manufacturing.
keywords Functionally Graded Trabecular Tectonics, Digital fabrication, Additive Manufacturing, Computational Design, Biomimetics
series SIGRADI
email
last changed 2021/03/28 19:59

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia17_670
id acadia17_670
authors Zwierzycki, Mateusz; Vestartas, Petras; Heinrich, Mary Katherine; Ayres, Phil
year 2017
title High Resolution Representation and Simulation of Braiding Patterns
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 670- 679
doi https://doi.org/10.52842/conf.acadia.2017.670
summary From the hand-crafted to the highly engineered, braided structures have demonstrated broad versatility across scales, materials, and performance types, leading to their use in a plethora of application domains. Despite this prevalence, braided structures have seen little exploration within a contemporary architectural context. Within the flora robotica project, complex braided structures are a core element of the architectural vision, driving a need for generalized braid design modeling tools that can support fabrication. Due to limited availability of existing suitable tools, this interest motivates the development of a digital toolset for design exploration. In this paper, we present our underlying methods of braid topology representation and physics-based simulation for hollow tubular braids. We contextualize our approach in the literature where existing methods for this class of problem are not directly suited to our application, but offer important foundations. Generally, the tile generation method we employ is an already known approach, but we meaningfully extend it to increase the flexibility and scope of topologies able to be modeled. Our methods support design workflows with both predetermined target geometries and generative, adaptive inputs. This provides a high degree of design agency by supporting real-time exploration and modification of topologies. We address some common physical simulation problems, mainly the overshooting problem and collision detection optimization, for which we develop dynamic simulation constraints. This enables unrolling into realistically straight strips, our key fabrication-oriented contribution. We conclude by outlining further work, specifically the design and realization of physical braids, fabricated robotically or by hand.
keywords design methods; information processing; fabrication; digital craft; manual craft; representation
series ACADIA
email
last changed 2022/06/07 07:57

_id cf2017_474
id cf2017_474
authors Arora, Mallika; Pineda, Sergio; Williams, P. Andrew; Harris, Kenneth D. M.; Kariuki, Benson M.
year 2017
title Polymorphic Adaptation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 474-491.
summary Polymorphism, the ability of a substance to exist as multiple, different, crystalline solids is a subject of much interest in the fields of chemistry, pharmacy and crystallography. In some cases, polymorphs can be found to interconvert, usually in response to changes in the physical environment such as changes in temperature or pressure. The ability of structures composed of identical building blocks to interconvert is relevant to the field of architecture where architectural artefacts may require to respond to transient demands. Here we describe the phenomenon of polymorphism and the relevance to the architectural field, together with the development of a bespoke software plugin to allow polymorphic crystal structures to be used in design.
keywords Collaborative Design Research, Polymorphism, Digital Form Studies
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2017_003
id caadria2017_003
authors Loh, Paul and Leggett, David
year 2017
title Tools as Agents in Design and Making Processes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 799-808
doi https://doi.org/10.52842/conf.caadria.2017.799
summary The inversion of knowledge structure in electronics prototyping platform has allowed designers and architects to design and build reasonably stable mechatronic systems to aid novel material production; these new and hacked computer numeric controlled (CNC) machines are used to explore emerging material constructs and facilitate generative design processes. This paper examines tool making and questions the agentive capacity of such tools in design processes through a case study of a bespoke CNC machine which uses vacuum thermoforming techniques. Through understanding the agentive capacity of CNC tools, the authors suggest that the knowledge structure of tool making is distinctly different from fabrication workflow. This paper proposes an alternative means of understanding the capacity of CNC tools in the design and making process.
keywords Digital Fabrication; Tool Making; Electronics Prototyping; Digital Workflow
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia17_456
id acadia17_456
authors Page, Mitchell
year 2017
title A Robotic Fabrication Methodology for Dovetail and Finger Jointing: An Accessible & Bespoke Digital Fabrication Process for Robotically-Milled Dovetail & Finger Joints
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 456- 463
doi https://doi.org/10.52842/conf.acadia.2017.456
summary Since the advent of industrialized processes in modern construction industries, the development of and relationship between computer-aided tools of design and computer-controlled tools of fabrication has steadily yielded new and innovative construction methodologies. Whilst industry has adopted many of these innovations for use by highly efficient machines and flexible processes, their operation is often highly dependent on industrial scales of production, and thus often inaccessible for small-scale, bespoke and affordable application. The prototype integrated joint milling methodology, case study and open-source software plugin ‘Dove’ presented in this paper, explores the efficacy of algorithmic processes in dynamically generating complex tooling paths and machine code for fabrication of bespoke dovetail and finger joints on a 6-axis industrial robot. The versatility, speed and precision of 6-axis robotic milling, allows us to liberate the efficiency, integrity and aesthetic of the dovetail and finger joint types from traditional application, and apply them to new architectures involving mass-customisation, complex form, and diverse materialities. In the development of full-immersion milling toolpaths and back-face filleting techniques that drastically reduce cutting times, tool path complexity and material waste, this study seeks to build upon past and current research by proposing a comparatively simple, efficient and more intuitive approach to robotically-fabricated integrated jointing for application at a variety of scales.
keywords material and construction; fabrication; construction/robotics; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2017_443
id cf2017_443
authors Araya, Sergio; Veliz, Felipe; Quest, Sylvana; Truffello, Ricardo
year 2017
title Igneous Tectonics: Turning disaster into resource through digital fabrication
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 443-456.
summary This investigation aims to develop and establish digital fabrication and design techniques and protocols to process volcanic materials that have caused significant environmental and social damage, using them to reconstruct new and improved structures to replace those destroyed, palliating the negative effects of volcanic eruptions and contributing a new economic resource to affected communities. The study recovers underused material and explore its qualities, recovering lost stonemasonry skills though advanced CNC and robotic manufacturing.
keywords Robotic manufacturing, parametric design, digital fabrication, material research, CNC stonemasonry.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_128
id acadia17_128
authors Bacharidou, Maroula
year 2017
title Touch, See, Make: Employing Active Touch in Computational Making
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 128-137
doi https://doi.org/10.52842/conf.acadia.2017.128
summary In architectural education and practice, we don’t come in physical contact with what we make until the later stages of the design process. This vision-oriented approach to design is something deeply rooted in architectural practice: from Alberti’s window to the screens of our computers, design has traditionally been more of a visual and less of a hands-on process. The vision of the presented study is that if we want to understand the way we make in order to improve tools for computational design and making, we need to understand how our ability to make things is enhanced by both our visual and tactile mechanisms. Bringing the notion of active touch from psychology into the design studio, I design and execute a series of experiments investigating how seeing, touching, or seeing and touching exhibit different sensory competencies, and how these competencies are expressed through the process of making. The subjects of the experiment are asked to tactilely, visually, or tactilely and visually observe a three-dimensional object, create descriptions of its composition, and to remake it based on their experience of it using plastic materials. After the execution of the experiment, I analyze twenty-one reproductions of the original object; I point to ways in which touch can detect scale and proportions more accurately than vision, while vision can detect spatial components more efficiently than touch; I then propose ways in which this series of experiments can lead to the creation of new design and making tools.
keywords education society & culture; computational / artistic culture;s hybrid practices; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2017_034
id sigradi2017_034
authors Barrozo do Amaral Villares, Alexandre; Daniel de Carvalho Moreira
year 2017
title Python on the Landscape of Programming Tools for Design and Architectural Education
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.237-241
summary Currently most professional modeling and computer graphics software packages embed a scripting language. This is an early report on collecting data about software applications and coding tools geared towards the educational environment, preparing a listing for further evaluation and analysis of platforms. An increase in the adoption of Python as the embedded scripting syntax in many established tools can already be recognized, therefore the creation of educational materials on Python for design and architectural education merits further attention. Other insights on the educational potential of the available tools might be gained by advancing the data collection and evaluation work.
keywords Education; Design; Architecture; Programming; Python.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_148
id ecaade2017_148
authors Baseta, Efilena, Sollazzo, Aldo, Civetti, Laura, Velasco, Dolores and Garcia-Amorós, Jaume
year 2017
title Photoreactive wearable: A computer generated garment with embedded material knowledge - A computer generated garment with embedded material knowledge
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 317-326
doi https://doi.org/10.52842/conf.ecaade.2017.2.317
summary Driven by technology, this multidisciplinary research focuses on the implementation of a photomechanical material into a reactive wearable that aims to protect the body from the ultraviolet radiation deriving from the sun. In this framework, the wearable becomes an active, supplemental skin that not only protects the human body but also augments its functions, such as movement and respiration. The embedded knowledge enables the smart material to sense and exchange data with the environment in order to passively actuate a system that regulates the relation between the body and its surroundings in an attempt to maintain equilibrium. The design strategy is defined by 4 sequential steps: a) The definition of the technical problem, b) the analysis of the human body, c) the design of the reactive material system, as well as d) the digital simulations and the digital fabrication of the system. The aforementioned design strategies allow for accuracy as well as high performance optimization and predictability in such complex design tasks, enabling the creation of customized products, designed for individuals.
keywords smart materials; wearable technology; data driven design; reactive garment; digital fabrication; performance simulations
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_305141 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002