CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id cf2017_042
id cf2017_042
authors Pinochet, Diego
year 2017
title Discrete Heuristics: Digital design and fabrication through shapes and material computation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 42.
summary In the case of designers, architects and arts, tools are part of a repertoire of cognitive, symbolic, and semiotic artifacts with which each explores and learn about design problems. Nonetheless, when using digital fabrication tools, a dichotomy between what is ideated and what is made appears as an evident problem since many of the perceptual aspects of sensing and thinking about new things in the making are neglected. It is argued that this establishes a dichotomy between what is ideated and what is executed as an outcome from that idea. How designers can think, learn and augment their creativity by using digital tools in a more relational, exploratory, interactive and creative way? Furthermore, how can we teach design using contemporary fabrication tools beyond its representational capabilities? This paper explores the richness of using digital fabrication tools through the lens of shapes grammars as a design paradigm in order to extend computational making including digital fabrication tools, gestures and material behavior as crucial actors of the design process. Through the use of discrete heuristics - that is, the elaboration of deictic rules for computation with physical objects, materials and fabrication tools in a precise yet perceptual way- this paper shows experiments inside a third year design studio to overcome the hylomorphism present in the digital design and make dichotomy.
keywords Digital fabrication, Computational making, Human computer interaction, Shape grammars
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_62
id acadia17_62
authors Al-Assaf, Nancy S.; Clayton, Mark J.
year 2017
title Representing the Aesthetics of Richard Meier’s Houses Using Building Information Modeling
doi https://doi.org/10.52842/conf.acadia.2017.062
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 62-71
summary Beyond its widespread use for representing technical aspects and matters of building and construction science, Building information modeling (BIM) can be used to represent architectural relationships and rules drawn from aesthetic theory. This research suggests that BIM provides not only vocabulary but also syntactical tools that can be used to capture an architectural language. In a case study using Richard Meier’s language for single-family detached houses, a BIM template has been devised to represent the aesthetic concepts and relations therein. The template employs parameterized conceptual mass objects, syntactical rules, and a library of architectonic elements, such as walls, roofs, columns, windows, doors, and railings. It constrains any design produced using the template to a grammatically consistent expression or style. The template has been used as the starting point for modeling the Smith House, the Douglas House, and others created by the authors, demonstrating that the aesthetic template is general to many variations. Designing with the template to produce a unique but conforming design further illustrates the generality and expressiveness of the language. Having made the formal language explicit, in terms of syntactical rules and vocabulary, it becomes easier to vary the formal grammar and concrete vocabulary to produce variant languages and styles. Accordingly, this approach is not limited to a specific style, such as Richard Meier's. Future research can be conducted to demonstrate how designing with BIM can support stylistic change. Adoption of this approach in practice could improve the consistency of architectural designs and their coherence to defined styles, potentially increasing the general level of aesthetic expression in our built environment.
keywords design methods; information processing; BIM; education
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2017_105
id ecaade2017_105
authors Miodragovic Vella, Irina and Kotnik, Toni
year 2017
title Stereotomy, an Early Example of a Material System
doi https://doi.org/10.52842/conf.ecaade.2017.2.251
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 251-258
summary Stereotomy originated as a technique that accumulated theoretical and practical knowledge on stone material properties and construction. At its peak in the nineteenth century, by pushing the structure and construction limits, it gained the ability of using "the weight of the stone against itself by making it hover in space through the very weight that should make it fall down" (Perrault 1964, cited Etelin, 2012). The modern architectural tectonics, based on structural comprehension in architecture, found no value in stereotomy beyond its early, Gothic period. Similarly, digital architectural theory recognized in Gothic the early examples of a material systems. This paper reassesses stereotomy at its fundamental levels, as a material system based on generative processes that assimilate structure and construction through parameterization. In this way, a theoretical framework is established that exposes stereotomy's intrinsic potentials: the continuity of historic and contemporary examples, overlaps between current research endeavours, and its genuine relevance for contemporary digital architecture.
keywords stereotomy, material system, Abeille vault, parametric design
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_000
id acadia17_000
authors Nagakura, Takehiko; Tibbits, Skylar; Iba?ez, Mariana and Mueller, Caitlin (eds.)
year 2017
title ACADIA 2017: DISCIPLINES & DISRUPTION
doi https://doi.org/10.52842/conf.acadia.2017
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), 706 p.
summary The Proceedings of the ACADIA 2017 conference contains peer reviewed research papers presented at the 37th annual conference of the Association for Computer Aided Design in Architecture. Disciplines & Disruption initiates a dialog about the state of the discipline of architecture and the impact of technology in shaping or disrupting design, methods and cultural fronts. For the past 30 years, distinctive advancements in technologies have delivered unprecedented possibilities to architects and enabled new expressions, performance, materials, fabrication and construction processes. Simultaneously, digital technology has permeated the social fabric around architecture with broad influences ranging from digital preservation to design with the developing world. Driven by technological, data and material advances, architecture now witnesses the moment of disruption, whereby formerly distinct areas of operation become increasingly connected and accessible to architecture's sphere of concerns in ways never before possible. Distinctions between design and making, building and urban scale, architecture and engineering, real and virtual, on site and remote, physical and digital data, professionals and crowds, are diminishing as technology increases the designer's reach far beyond the confines of the drafting board. This conference provides a platform to investigate the shifting landscape of the discipline today, and to help define and navigate the future.
keywords Computer Aided Design, ACADIA, ACADIA 2017, ACADIA Conference, Architecture
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia17_482
id acadia17_482
authors Penman, Scott
year 2017
title Toward Computational Play
doi https://doi.org/10.52842/conf.acadia.2017.482
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 482- 491
summary The day is not far off when autonomous, artificially intelligent agents will be employed in creative industries such as architecture and design. Artificial intelligence is rapidly becoming ubiquitous, and it has absorbed many capabilities once thought beyond its reach. As such, it is critical that we reflect on the relationship between AI and design. Design is often tasked with pushing the envelope in the quest for novel meaning and experience. Designers can’t always rely upon existing models to judge their work. Operating like this requires a curious and open mind, a willingness to eschew reward and occasionally break the rules, and a desire to explore for the sake of exploring. These behaviors fly in the face of traditional implementations of computation and raise difficult questions about the autonomy and subjectivity of artificially intelligent machines. This paper proposes computational play as a field of research that covers how and why designers roam as freely as they do, what the creative potential of such exploration might be, and how such techniques might responsibly be implemented in computational machines. The work argues that autotelism, defined as internal motivation, is an essential aspect of play and outlines how it can be incorporated in a computational framework. The work also demonstrates a proof-of-concept in the form of an autonomous drawing machine that is able to plot a drawing, view the drawing, and make decisions based on what it sees, bringing computational vision and computational drawing together into a cyclical process that permits the use of autotelic play behavior.
keywords design methods; information processing; art and technology; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 08:00

_id ecaade2017_169
id ecaade2017_169
authors Zupancic, Tadeja, Verbeke, Johan, Herneoja, Aulikki and Achten, Henri
year 2017
title Competences for Digital Leadership in Architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.289
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 289-296
summary The use of "digital technology" - computer software, new material application, rapid prototyping, Computer Aided Manufacturing, Virtual Reality, collaborative design - is no longer a novel and innovative aspect of architectural design. In fact, many offices and architects use a varied mix of these technologies in their daily practice. We can observe that digital technology has become a mature part of architectural practice. In this paper, we want to outline an outstanding level of excellence in the use of digital technologies that enable certain widely acknowledged offices (for example Foster and Partners, UN Studio, BIG, and so on) to take their design work to high degree of quality and performance. We call this level and phenomenon "digital leadership." Digital leadership goes beyond technical digital skills. It is an integrated and holistic approach that makes no distinction between "architectural design" and "digital technology" and in fact creates a new blend of both. We propose that digital leadership has six key areas: Technological Ecologies; Creativity, Knowledge Processes, and Experimentation; Design and Research; Human Resources and Leadership; Collaborative and Explorative Environments and Impact of Digital Leadership. These are discussed in more detail in this paper.
keywords architecture; digital leadership competences; research by design; creative practice; design research; impact
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2017_002
id ecaade2017_002
authors Costa, Fábio, Eloy, Sara, Sales Dias, Miguel and Lopes, Mariana
year 2017
title ARch4models - A tool to augment physical scale models
doi https://doi.org/10.52842/conf.ecaade.2017.1.711
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-718
summary This paper focus on the development and evaluation of a computer tool that enriches physical scale models of buildings, which are commonly used during architecture and civil engineering design processes. The main goal of this work is to enable designers, namely architects, to use the affordances of the physical scale models, by enhancing them with digital characteristics that can be easily changed, allowing an enriched interaction of the designer with such models. Our in-house developed Augmented Reality tool, referred to as ARch4models, augments the user experience with visual features and interactive capabilities, not possible to accomplish with physical models (see this video in https://goo.gl/5zbdTQ). The tool allows the coherent registration between the real and the digital in the same space. Satisfaction evaluation studies were conducted that have shown that ARch4models improves the building design process when compared with a traditional methodology employing solely physical scale models.
keywords augmented reality; architecture; physical scale model; 3D model; AEC design process
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_82
id acadia17_82
authors Andreani, Stefano; Sayegh, Allen
year 2017
title Augmented Urban Experiences: Technologically Enhanced Design Research Methods for Revealing Hidden Qualities of the Built Environment
doi https://doi.org/10.52842/conf.acadia.2017.082
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 82-91
summary The built environment is a complex juxtaposition of static matter and dynamic flows, tangible objects and human experiences, physical realities and digital spaces. This paper offers an alternative understanding of those dichotomies by applying experimental design research strategies that combine objective quantification and subjective perception of urban contexts. The assumption is that layers of measurable datasets can be afforded with personal feedback to reveal "hidden" characteristics of cities. Drawing on studies from data and cognitive sciences, the proposed method allows us to analyze, quantify and visualize the individual experience of the built environment in relation to different urban qualities. By operating in between the scientific domain and the design realm, four design research experiments are presented. Leveraging augmenting and sensing technologies, these studies investigate: (1) urban attractors and user attention, employing eye-tracking technologies during walking; (2) urban proxemics and sensory experience, applying proximity sensors and EEG scanners in varying contexts; (3) urban mood and spatial perception, using mobile applications to merge tangible qualities and subjective feelings; and (4) urban vibe and paced dynamics, combining vibration sensing and observational data for studying city beats. This work demonstrates that, by adopting a multisensory and multidisciplinary approach, it is possible to gain a more human-centered, and perhaps novel understanding of the built environment. A lexicon of experimented urban situations may become a reference for studying different typologies of environments from the user experience, and provide a framework to support creative intuition for the development of more engaging, pleasant, and responsive spaces and places.
keywords design methods; information processing; art and technology; hybrid practices
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_178
id acadia17_178
authors Charbel, Hadin; López, Déborah
year 2017
title In(di)visible: Computing Immersive Environments through Hybrid Senses
doi https://doi.org/10.52842/conf.acadia.2017.178
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 178-189
summary The research presented in this paper seeks to examine how architecture and computational tools can be used to communicate on multiple levels by incorporating a series of qualitative and quantitative measures as criteria for a spatial and architectural design. Air is taken as a material that has the capacity to create boundaries, yet unless under extreme conditions often remains invisible. Varying in qualities such as temperature, humidity and pollution, the status of air is highly local to a particular context. The research explores how rendering air visible through an architectural intervention made of networked sentient prototypes can be used in the reation of a responsive outdoor public space. Although humans' ability to perceive and respond to stimuli is highly advanced, it is nevertheless limited in its spectrum. Within the urban context specifically, the information, material and flux being produced is becoming ever more complex and incomprehensible. While computational tools, sensors and data are increasingly accessible, advancements in the fields of cognitive sciences and biometrics are unraveling how the mind and body works. These developments are explored in tandem and applied through a proposed methodology. The project aims to negotiate the similarities and differences between humans and machines with respect to the urban environment. The hypothesis is that doing so will create a rich output, irreducible to a singular reading while heightening user experience and emphasizing a sense of place.
keywords design methods; information processing; hybrid practices; data visualization; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia17_232
id acadia17_232
authors Doyle, Shelby; Forehand, Leslie; Senske, Nick
year 2017
title Computational Feminism: Searching for Cyborgs
doi https://doi.org/10.52842/conf.acadia.2017.232
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 232-237
summary As computational design matures, the discipline is in a position to address an increasing number of cultural dimensions: social, political, and ethical. This paper examines the gender gap in computational design and proposes an agenda to achieve gender equality. Data from architectural publications and the CumInCAD database provide metrics for measuring the segregation between feminist and computational discourse. Examples of feminist theory establish possible entry points within computational design to bridge the gaps in gender equity and representation. Specifically, the authors re-examine 1990s networked feminism in relation to the computational culture of today. The paper concludes with a proposed definition of Computational Feminism as a social, political, and ethical discourse. This definition appropriates Donna Haraway’s cyborg as its symbolic instrument of equality.
keywords design methods; information processing; education; representation; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2020_184
id ecaade2020_184
authors Kycia, Agata and Guiducci, Lorenzo
year 2020
title Self-shaping Textiles - A material platform for digitally designed, material-informed surface elements
doi https://doi.org/10.52842/conf.ecaade.2020.2.021
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 21-30
summary Despite the cutting edge developments in science and technology, architecture to a large extent still tends to favor form over matter by forcing materials into predefined, often superficial geometries, with functional aspects relegated to materials or energy demanding mechanized systems. Biomaterials research has instead shown a variety of physical architectures in which form and matter are intimately related (Fratzl, Weinkamer, 2007). We take inspiration from the morphogenetic processes taking place in plants' leaves (Sharon et al., 2007), where intricate three-dimensional surfaces originate from in-plane growth distributions, and propose the use of 3D printing on pre-stretched textiles (Tibbits, 2017) as an alternative, material-based, form-finding technique. We 3D print open fiber bundles, analyze the resulting wrinkling phenomenon and use it as a design strategy for creating three-dimensional textile surfaces. As additive manufacturing becomes more and more affordable, materials more intelligent and robust, the proposed form-finding technique has a lot of potential for designing efficient textile structures with optimized structural performance and minimal usage of material.
keywords self-shaping textiles; material form-finding; wrinkling; surface instabilities; bio-inspired design; leaf morphogenesis
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2017_016
id caadria2017_016
authors Lee, Ju Hyun, Ostwald, Michael J. and Yu, Rongrong
year 2017
title Investigating Visibility Properties in the Design of Aged-Care Facilities
doi https://doi.org/10.52842/conf.caadria.2017.365
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 365-374
summary This paper uses a Space Syntax approach - a computational and mathematical method using graph-based measurements - to undertake a comparative assessment of the visibility properties of three architectural plans with unusual spatial requirements. Specifically, the method is used to compare the spatio-visual properties of an idealised plan for a residential aged-care facility with the actual plans used for two facilities. The purpose of this analysis is to begin to examine the ways in which syntactical values and isovist properties can be used to capture spatial and social characteristics of plans designed for the physical and cognitive needs of an ageing populace. The application of this approach seeks to support a better understanding of the relationship between spaces and their social properties in the design of aged-care facilities.
keywords visibility analysis; Space Syntax; spatial cognition; social property
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac201715104
id ijac201715104
authors Matalucci, Berardo; Kenton Phillips, Alicia A Walf, Anna Dyson and Joshua Draper
year 2017
title An experimental design framework for the personalization of indoor microclimates through feedback loops between responsive thermal systems and occupant biometrics
source International Journal of Architectural Computing vol. 15 - no. 1, 54-69
summary How can building technologies accommodate different and often conflicting user preferences without dissolving the social cohesiveness, intrinsic of every architectural intervention? Individual thermal comfort has often been considered a negligible sensorial experience by modern heating and cooling technologies, and is often influenced by large-group norms. Alternatively, we propose that buildings are repositories of indoor microclimates that can be realized to provide personalized comfort, to create healthier environments, and to enhance the attributes of architectural interventions into haptic dimensions. In response, the goal of this study is to characterize an experimental framework that integrates responsive thermal systems with occupants’ direct and indirect experience, which includes stress response and biometric data. A computational model was used up to inform and analyze thermal perception of subjects, and later tested in a responsive physical installation. While results show that thermal comfort assessment is affected by individual differences including cognitive functions and biometrics, further computational efforts are needed to validate biometric indicators. Finally, the implications of personalized built environments are discussed with respect to future technology developments and possibilities of design driven by biometric data.
keywords Personalized thermal comfort, interactive building technologies, bio-feedback loops, indoor microclimates
series other
type normal paper
email
last changed 2019/08/02 08:28

_id sigradi2017_076
id sigradi2017_076
authors Neto de Faria, José; Mirtes Marins Oliveira
year 2017
title Design da Informação e Resiliência: Estudo dos níveis de correlação entre o indivíduo, o sistema de informação e o fenômeno representado. [Information Design and Resilience: A study of correlation levels between subject, “information system” and represented phenomena.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.519-527
summary This article search to describe how correlation levels between subject, information system and represented phenomena define representational models which may be used to enhance phenomena understanding, with aid of resilience representational models. The main work aim is to identify how representational models can be used to enhance resilience behaviour of information systems. Only dynamic information systems seems to show fair resilient behaviour, especially when they approach cognitive process reproduction realized by subject. Resilience in “information systems” emulate thinking object and thinking process.
keywords Information Design; Resilience; Subject; Information System; Phenomena.
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia17_590
id acadia17_590
authors Steinfeld, Kyle
year 2017
title Dreams May Come
doi https://doi.org/10.52842/conf.acadia.2017.590
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 590- 599
summary This paper argues that prevailing approaches to CAD software have been fashioned to support modes of reasoning only of secondary importance to design activity, and that, due to some recent developments in computer vision, this state of affairs may be about to change. Surveying the current state of CAD tools, a critical position is developed based upon the best current understanding of the cognitive processes related to design. Following a high-level overview of some of the important developments in computer vision, and a curated set of examples of the applications these developments are finding in practices loosely related to architectural design, we draw out a number of parallels between machine learning (ML) and design thinking. We expect that this will serve as a guide to future research at the intersection of ML and architectural design tools.
keywords education society & culture; computer vision; education
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_007
id ecaade2017_007
authors Wurzer, Gabriel, Lorenz, Wolfgang E., Cerovsek, Tomo and Martens, Bob
year 2017
title Contrasting Publications in Design and Scientific Research
doi https://doi.org/10.52842/conf.ecaade.2017.1.385
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 385-394
summary This paper explores the differences between 'design' and 'science' papers published at eCAADe conferences through use of automatic classification. The latter is conducted using a set of differentiating criteria (e.g. number of figures determines a paper to be either 'design' or 'science') which are calibrated with the help of a manual selection of papers from eCAADe 2015 as ground truth. Results show that we predict 83% of the papers correctly; experiments using data from eCAADe 2014 until eCAADe 2016 furthermore show the stability of our results. However, we are not so much after the development this automatic classification but rather want to characterize the two research cultures of design and science. This is achieved by taking a close look at the differentiating criteria, which can inform tools such as ProceeDings over possible future directions and adaptation needs.
keywords Differentiation; Design; Science; ProceeDings; CumInCAD
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia17_154
id acadia17_154
authors Brown, Nathan; Mueller, Caitlin
year 2017
title Designing With Data: Moving Beyond The Design Space Catalog
doi https://doi.org/10.52842/conf.acadia.2017.154
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 154-163
summary Design space catalogs, which present a collection of different options for selection by human designers, have become commonplace in architecture. Increasingly, these catalogs are rapidly generated using parametric models and informed by simulations that describe energy usage, structural efficiency, daylight availability, views, acoustic properties, and other aspects of building performance. However, by conceiving of computational methods as a means for fostering interactive, collaborative, guided, expert-dependent design processes, many opportunities remain to improve upon the originally static archetype of the design space catalog. This paper presents developments in the areas of interaction, automation, simplification, and visualization that seek to improve on the current catalog model while also describing a vision for effective computer-aided, performance-based design processes in the future.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_069
id ecaade2017_069
authors D'Uva, Domenico
year 2017
title Unfolding the design of architecture as a strategy to assess intellectual property - Bridle pirating architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.297
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 297-302
summary Modeling tools are evolving the process of architectural design from the use ordinary digital tool into a role of creator of complex shapes, through coding configurations. These procedures are becoming the structural ground of the architectural shape, going beyond their sole tools role. The increasing in importance of such codes implies a major level of awareness for their use, which is worth of a deeper analysis. The system of relations among parts in an architectural design picks a single configuration among infinite others, because it is produced by a design process which find its fulfillment in the final portray. Through the spreading of digital design tools, such final configuration becomes a step in a clearly reproducible process. The project is achieved through a series of starting conditions, which undergo a parametric process, that produces the final result. An identical parametric process can be applied under slightly different starting conditions and produce completely different results. These results are connected with the code which produced them, but is the authorship still property of the original author?
keywords Morphogenesis; Parametric; Authorship
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2017_011
id sigradi2017_011
authors de Freitas Pires, Janice; Alice Theresinha Cybis Pereira
year 2017
title Modelagem Paramétrica da Geometria Complexa de Estruturas Regenerativas na Arquitetura [Parametric Modeling of Complex Geometry of Regenerative Structures in Architecture]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.84-92
summary The regenerative architecture emerges with an approach beyond the sustainability of buildings, seeking to extend the relationship with the environment, in order to promote the regeneration of living systems, through a complete understanding of the place to design regenerative structures. In this work, with a didactic objective, a study is carried out on the principles of regenerative architecture and its association with recurrent complex geometries in nature, structuring parametric modeling processes of such geometries.
keywords Regenerative architecture; Complex geometry; Teaching architecture; Parametric modeling.
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_906557 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002