CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 6 of 6

_id ecaade2017_061
id ecaade2017_061
authors Castellari, Dario and Erioli, Alessio
year 2017
title Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics
doi https://doi.org/10.52842/conf.ecaade.2017.1.661
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 661-670
summary Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.
keywords tectonics; combinatorics; unit-based system; branching network
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_163
id caadria2017_163
authors Kalantari, Saleh and Saleh Tabari, Mohammad Hassan
year 2017
title GrowMorph: Bacteria Growth Algorithm and Design
doi https://doi.org/10.52842/conf.caadria.2017.479
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 479-487
summary GrowMorph is an ongoing research project that addresses the logic of bacterial cellular growth and its potential uses in architecture and design. While natural forms have always been an inspiration for human creativity, contemporary technology and scientific knowledge can allow us to advance the principle of biomimesis in striking new directions. By examining various patterns of bacterial growth, including their parametric logic, their use of responsive membranes and scaffolding structures, and their environmental fitness, this research creates new algorithmic design and construction models that can be applied through digital fabrication. Based on data from confocal microscopy, simulations were created using programming language Processing to model the environmental responses and morphology of the bacteria's growth. To demonstrate the utility of the results, the simulations created in this research were used to design an organically shaped pavilion and to suggest a new digital knitting process for material construction. The results from the study can inspire designers to make use of bacterial growth logic in their work, and provide them with practical tools for this purpose. Potential applications include novel designs for responsive surfaces, new fabrication processes, and unique spatial structures in future architectural work.
keywords Synthetic Biology; Architecture; Bio-fabrication; Bio-constructs; Design Computation
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_350
id acadia17_350
authors Leach, Neil
year 2017
title Zoom Space: The Limits of Representation
doi https://doi.org/10.52842/conf.acadia.2017.350
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 350- 359
summary What happens when we reduce architecture to the logic of representation? This question is set in perspective by the recent re-emergence of certain discourses in architecture that see the world in terms of style, and that privilege the appearance and form of a design over its performance and the processes that generate it. This in turn is being fed by certain digital platforms that encourage the user to see the world solely in visual terms. The issue comes to a head with the practice of zooming in and out on the computer screen, a practice that helps architects to operate seemingly effortlessly at a range of different scales, from jewelry through to the city, but is not without its problems. This paper looks first at the challenges of operating at different scales by drawing on insights from the world of biology, and considers the performance-based issues being overlooked in this process of zooming in and out. It then goes on to theorize the problem by drawing upon the distinction between extensive and intensive properties as promoted by Manuel DeLanda following the work of Gilles Deleuze and Félix Guattari, and considers the relevance of this distinction for architectural design. The paper concludes that we can never escape representation, but by focusing solely on it at the expense of performance—and vice versa—we are overlooking an important factor that defines architecture.
keywords design methods; information processing; representation; form finding
series ACADIA
email
last changed 2022/06/07 07:52

_id sigradi2017_080
id sigradi2017_080
authors Meneses-Carlos, Fernando; Daniela Frogheri
year 2017
title Espacios habitables sensibles: Microorganismos como herramientas de diseño [Sensitive habitable spaces: Microorganisms as design tools.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.550-559
summary This article aims to validate the possibility of including technology from micobiologies and synthetic biology in architecture and design. For this analysis, five projects are presented: a project of our own, developed by the research group, another with a direct application in architecture and three additional projects form the world of microbiology, which review topics such as energy generation, materials production and improving air quality thought microorganisms. This analysis, aims to legitimate, and expose the advantages and limits of a potential union between the molecular world and the design of the habitable space.
keywords Architecture, Microorganisms, Sensitive, Emergency; Monads
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_161
id ecaade2017_161
authors Pietri, Samuel and Erioli, Alessio
year 2017
title Fibrous Aerial Robotics - Study of spiderweb strategies for the design of architectural envelopes using swarms of drones and inflatable formworks
doi https://doi.org/10.52842/conf.ecaade.2017.1.689
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 689-698
summary This thesis research presents an integrated workflow for the design and fabrication of large-scale architectural envelopes using swarms of drones and inflatable structures as formworks. The work lies at the intersection of architecture, biology and robotics, incorporating generative design with digital fabrication techniques. The proposed approach aims to investigate the tectonic potential of computational systems which encode behavioral strategies inside an agent-based model. It is from local interactions taking place at the micro-scale of complex systems that a new set of architectural tendencies seem to emerge. The authors focused on the strategies developed by colonies of social spiders during the construction of three-dimensional webs. Their communication system and the characteristics of the material structure have been then modelled and translated in a digital environment. A physical fabrication process, in which the simulated agents become drones in a real world environment, was concurrently developed. The goal was to investigate the architectural possibilities given by an autonomous aerial machine depositing fibrous material over inflatable formworks and its potential usefulness in specific sites where overall conditions don't allow traditional construction techniques.
keywords tectonics; robotics; multi-agent systems; stigmergy; drones; inflatables
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_306
id ecaade2017_306
authors Rossi, Michela and Buratti, Giorgio
year 2017
title Form is Matter - Triply periodic minimal surfaces structures by digital design tools
doi https://doi.org/10.52842/conf.ecaade.2017.2.259
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 259-268
summary Architecture and biology teach that the shape affects mechanical behaviour of structures therefore geometry is the basic concept of design, with an ethic responsible and sustainable approach, following the nature's organic model. Industrial design may apply formal properties of elementary shapes and basic design rules to manage the "geometrical behaviour" of new structural surfaces. The research aims to apply digital tools to the design of surface structures that maximise the matter efficiency in the development of "solid fabrics" with parametric controlled geometry.
keywords Minimal surfaces; Parametric and generative design; Shape and form studies; Digital fabrication
series eCAADe
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_338433 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002