CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 571

_id caadria2017_147
id caadria2017_147
authors Agirachman, Fauzan Alfi, Ozawa, Yo, Indraprastha, Aswin, Shinozaki, Michihiko, Sitompul, Irene Debora Meilisa, Nuraeni, Ruri, Chirstanti, Augustine Nathania, Putra, Andrew Cokro and Zefanya, Teresa
year 2017
title Reimagining Braga - Remodeling Bandung's Historical Colonial Streetscape in Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2017.023
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 23-32
summary This paper presents the experience of the first phase of remodeling existing historical and colonial district in Bandung, Indonesia, including existing building façade, streetscape and street furniture. Braga Street is chosen as study case because it is a well-known historical street in Bandung with art deco style buildings constructed during Dutch colonial era. By remodeling it, it could help stakeholders to evaluate existing Braga street condition, to test any modification of buildings along the street and to determine specific regulation for the street. In this case, we use Unity3D and Oculus Rift DK2 for remodeling current situation. We gathered feedback from respondents using a questionnaire given after they experienced the model in VR. Many lessons learned from modeling process and respondents' feedback: higher frame rate to make seamless VR experience by having all components on a low poly model and provide smoother movement to prevent visual discomfort. This paper's conclusion gives suggestions for anyone who want to start architecture modeling in virtual reality for the very first time and how to optimize it.
keywords Virtual reality; historical building; digital reconstruction; streetscape
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2017_585
id cf2017_585
authors Ben, Yuqiang; Niblock, Chantelle; Bonenberg, Lukasz
year 2017
title Lincoln Cathedral Interactive Virtual Reality Exhibition
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 585-595.
summary This paper demonstrates a workflow converting terrestrial laser scan (TLS) data into an interactive virtual reality (VR) platform. A VR exhibition prototype of Lincoln Cathedral was created to validate the established workflow in terms of the technical and visual performance, usability, and functionality. It combined TLS data and storytelling to produce a shareable platform, inviting opportunities for public engagement, and to facilitate custodians with the tools to maintain the building’s heritage. The paper discusses the use of open sourcesoftware and suggests future work.
keywords 3D Laser Scan, Virtual Reality, User Experience, Building Heritage
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_052
id caadria2017_052
authors Sun, Chengyu, Xu, Diqiong, Daria, Kryvko and Tao, Peihong
year 2017
title A "Bounded Adoption" Strategy and its Performance Evaluation of Virtual Reality Technologies Applied in Online Architectural Education
doi https://doi.org/10.52842/conf.caadria.2017.043
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 43-52
summary Thousands of online virtual experiments are being developed by hundreds of National Virtual Experimental Teaching Demonstration Centers run by top universities in China. According to an analysis on the existing VR technologies accessible in market and the conditions of domestic universities, a "bounded adoption" strategy was raised by Tongji University, when it dealing with a daily teaching context. It puts the manpower and financial resources into the design of virtual experiments, so-called 'contents building', rather than equipment purchasing as before. After three new experiments built, an evaluation on their contributions to learning performance is conducted immediately, which tries to understand whether the strategy works and how to move on. As one of these experiments, learning a historic Chinese temple in an online way is compared with other four learning methods from traditional ways to hybrid ways. The result indicates that the VR technologies applied with the "bounded adoption" strategy have a positive coherence to high learning performance, especially in form oriented recognition task, which plays a key role in architectural education. Meanwhile, the current design of virtual task involving building process has to be improved.
keywords Architectural education; Online experiment; Virtual reality; Performance evaluation
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_92
id acadia17_92
authors Anzalone, Phillip; Bayard, Stephanie; Steenblik, Ralph S.
year 2017
title Rapidly Deployed and Assembled Tensegrity System: An Augmented Design Approach
doi https://doi.org/10.52842/conf.acadia.2017.092
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 92-101
summary The Rapidly Deployable and Assembled Tensegrity (RDAT) project enables the efficient automated design and deployment of differential-geometry tensegrity structures through computation-driven design-to-installation workflow. RDAT employs the integration of parametric and solid-modeling methods with production by streamlining computer numerically controlled manufacturing through novel detailing and production techniques to develop an efficient manufacturing and assembly system. The RDAT project emerges from the Authors' research in academia and professional practice focusing on computationally produced full-scale performative building systems and their innovative uses in the building and construction industry.
keywords design methods; information processing; AI; machine learning; form finding; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2017_003
id sigradi2017_003
authors Dávila, Mariolly; González Alayón, Pedro Wightman
year 2017
title Patrimonio moderno y realidad aumentada e inmersiva: De la valorización a la reconstrucción virtual. Caso: Coliseo Humberto Perea, Barranquilla, Colombia [Modern heritage and augmented and inmersive reality: from valuation to virtual reconstruction. Case: Coliseum Humberto Perea, Barranquilla, Colombia]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.26-32
summary As the result of the demolishing decision of Humberto Perea was generated, a Seminar- Workshop on CG at Universidad del Norte with the purpose of evaluate his heritage´s modern movement in Barranquilla. The Seminar´s objective was to design a methodology for documenting the building through technologies: CG and mixed realities. The methodology contents two parts; First, the building incorporated into the context with previous to the demolition and with architectural survey. And second part was developed with the Seminar - Workshop and Immersive Virtual Reality. As conclusion was demonstrated that any heritage building can be documenting to be used by researchers.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_183
id ecaade2017_183
authors Wendell, Augustus and Altin, Ersin
year 2017
title Learning Space - Incorporating spatial simulations in design history coursework
doi https://doi.org/10.52842/conf.ecaade.2017.1.261
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 261-266
summary Art and architectural history education has long relied on photographic imagery. The geography of architectural history often demands an analog representation for the built form and photographic recordings have long been the widely adopted standard. In many cases, specific buildings have been taught for generations based on a handful of historical exposures. The impact of this precedent is an imperfect and highly privileged conception of architectural forms. Students learn only of a particular viewpoint of any given building, rather than understanding the building as a whole. Augmenting the tradition of select and static imagery in the classroom with new technologies can create a more comprehensive understanding of architectural precedents. This paper discusses an experiment conducted in Spring 2017 in presenting an architectural case study to a history class using a Virtual Reality 3D experience in comparison to a set of canonical photographs.
keywords Unreal Engine; Virtual Reality; Photography; 3D; Education
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2017_244
id ecaade2017_244
authors Chaltiel, Stephanie, Bravo, Maite and Chronis, Angelos
year 2017
title Digital fabrication with Virtual and Augmented Reality for Monolithic Shells
doi https://doi.org/10.52842/conf.ecaade.2017.2.211
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 211-218
summary The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design and fabrication techniques, such as the methods chosen for the suitable parametrization of the geometry based on materiality characteristics and construction constrains, the digital optimization criteria of variables, and the translation of the relevant code used for digital fabrication. Specifically, the translation from the digital to the physical when a definite materiality appears during the digital fabrication process proves to be a crucial step, which is typically approached as a linear and predetermined sequence. This often-difficult step offers the potential of embedding a certain level of interactivity between the fabricator and the materialized model during the fabrication process in order to allow for real time adjustments or corrections. This paper features monolithic shell construction processes that promote a simple interface of live interaction between the fabricator and the tool control during the digital fabrication process. The implementation of novel digital and physical methods will be explored, offering the possibility of being combined with automated fabrication actions controlled by real time inputs with virtual reality [VR] influenced by 3d scanning and 3d CAD programs, and the possibility of incorporating augmented reality [AR].
keywords virtual reality; augmented reality; monolithic shells
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_142
id ecaade2017_142
authors Gönenç Sorguç, Arzu, Kruşa Yemişcio?lu, Müge, Özgenel, Ça?lar F?rat, Katipo?lu, Mert Ozan and Rasulzade, Ramin
year 2017
title The Role of VR as a New Game Changer in Computational Design Education
doi https://doi.org/10.52842/conf.ecaade.2017.1.401.2
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 401-408
summary With the rapid advances in technology, virtual reality(VR) re-emerged as an affordable technology providing new potentials for virtual learning environments(VLE). Within the scope of this study, firstly a general perspective on potentials of VR to create an appropriate VLE is put forward regarding the potentials related with learning modalities. Then, VR as a VLE in architectural education is discussed and utilization of VR is revisited considering the fundamentals of education as how to enhance skills regarding creativity, furnish students to adopt future skills and how VR can be used to enhance design understanding as well as space perception and spatial relations. It is deliberated that instead of mirroring the real spaces, allowing students to understand the virtuality with its own constituents will broaden the understanding of space, spatial relations, scale, motion, and time both in physical and virtual. The dichotomy between physical and virtual materiality, the potentials and pitfalls in the process of transformation from real/physical to virtual - virtual to real/physical are discussed in relation with the student projects designed in the scope of Digital Design Studio course in Middle East Technical University. It is also shown that VR stimulates different learning modalities especially kinesthetic modality and helping students to develop creativity and metacognition about space and spatial relations.
keywords computational design education; virtual reality; digital tools; virtual learning environment
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
doi https://doi.org/10.52842/conf.acadia.2017.330
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_151
id ecaade2017_151
authors Moloney, Jules, Twose, Simon, Jenner, Ross, Globa, Anastasia and Wang, Rui
year 2017
title Lines from the Past - Non-photorealistic immersive virtual environments for the historical interpretation of unbuilt architectural drawings
doi https://doi.org/10.52842/conf.ecaade.2017.2.711
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-720
summary The trajectory of virtual reality for architecture is towards photo-realism. While this may be effective for some contexts, we propose that abstraction is more appropriate for the purposes of a historian interpreting drawings of unbuilt works of architecture. The case study we are using to explore this proposition is the Palazzo Littorio competition set in 1934 Rome. We present two prototype immersive virtual reality (iVR) applications developed in Unity for Oculus Rift: the first uses an etching aesthetic to produce a quasi-realistic site context and an interface that enables the comparative evaluation of competition entries from key viewing positions; the second application takes an even more abstract approach, where the aim is to immerse the historian within a 3D drawing, along with other historical material (drawings, photos, paintings, narrations of texts) and uses spatialized sound to evoke the ambience of the period.
keywords Virtual Reality; Non-Photorealism; Architectural History
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2017_028
id caadria2017_028
authors Sharah, Lachlan, Escalante, Erik, Fabbri, Alessandra, Guillot, Romain and Haeusler, M. Hank
year 2017
title Streamlining the Modelling to Virtual Reality Process - Semi-Automating Mesh Quadrangulation and UV Unwrapping for Grasshopper.
doi https://doi.org/10.52842/conf.caadria.2017.053
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 53-62
summary Visualisation in architecture often involves a transition between different modelling programs. This is done in order to be able to manually prepare and repair three-dimensional models for visualisations such as renders and VR simulations. In this paper the development of a direct link between a three-dimensional modelling platform and a Virtual Reality (VR) Engine is investigated. This is researched through the generation and manipulation of clean quad mesh topology, UV mapping and UV texture map creation. Through a reiterative process, all possible solutions for improved quad mesh topology for doubly curved surfaces are explored. The resulting clean quad mesh improves the usability of the model and application of textures to accurately simulate a real material. In parallel, the development of a UV unwrapping and UV map creation process was investigated to enhance the texturing process inside the same architectural modelling platform. The overall system was developed as an advanced tool for semi-automating and streamlining the process between modelling and VR simulation. The paper concludes with the limitations of the process and points out to future research to improve speed and quality as well guides to where future testing and experiments should be further investigated and applied.
keywords Virtual Reality; Quadrangulation; UV unwrapping; Physics Simulation
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_600
id acadia17_600
authors Tabrizian, Payam; Harmon, Brendan; Petrasova, Anna; Petras, Vaclav; Mitasova, Helena; Meentemeyer, Ross
year 2017
title Tangible Immersion for Ecological Design
doi https://doi.org/10.52842/conf.acadia.2017.600
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 600- 609
summary We introduce tangible immersion—virtual reality coupled with tangible interaction—to foster interdisciplinary collaboration in a critical yet creative design process. Integrating tangible, embodied interaction with geospatial modeling and immersive virtual environments (IVE) can make 3D modeling fast and natural, while enhancing it with realistic graphics and quantitative analytics. We have developed Tangible Landscape, a technology that links a physical model with a geographic information system and 3D-modeling platform through a real-time cycle of interaction, 3D scanning, geospatial computation, and 3D rendering. With this technology, landscape architects, other professionals, and the public can collaboratively explore design alternatives through an iterative process of intuitive ideation, geocomputational analysis, realistic rendering, and critical analysis. This is demonstrated with a test case for interdisciplinary problem-solving, in which a landscape architect and geoscientist use Tangible Landscape to collaboratively design landforms, hydrologic systems, planting, and a trail network for a brownfield site. Using this tangible immersive environment they rapidly explored alternative scenarios. We discuss how the participants used real-time analytics to collaboratively assess trade-offs between environmental and experiential factors, balancing landscape complexity, biodiversity, remediation capacity, and aesthetics. Together they explored how the relationship between landforms and natural processes affected the performance of the designed landscape. Technologies that couple tangible geospatial modeling with IVEs have the potential to transform the design process by breaking down disciplinary boundaries, but may also offer new ways to imagine space and democratize design.
keywords design methods; information processing; simulation & optimization; collaboration; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_009
id ecaade2017_009
authors Takizawa, Atsushi and Furuta, Airi
year 2017
title 3D Spatial Analysis Method with First-Person Viewpoint by Deep Convolutional Neural Network with Omnidirectional RGB and Depth Images
doi https://doi.org/10.52842/conf.ecaade.2017.2.693
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 693-702
summary The fields of architecture and urban planning widely apply spatial analysis based on images. However, many features can influence the spatial conditions, not all of which can be explicitly defined. In this research, we propose a new deep learning framework for extracting spatial features without explicitly specifying them and use these features for spatial analysis and prediction. As a first step, we establish a deep convolution neural network (DCNN) learning problem with omnidirectional images that include depth images as well as ordinary RGB images. We then use these images as explanatory variables in a game engine to predict a subjects' preference regarding a virtual urban space. DCNNs learn the relationship between the evaluation result and the omnidirectional camera images and we confirm the prediction accuracy of the verification data.
keywords Space evaluation; deep convolutional neural network; omnidirectional image; depth image; Unity; virtual reality
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_174
id ecaade2017_174
authors Tonn, Christian
year 2017
title Designing Colour in Virtual Reality - Comparing a Virtual Reality based and a Screen based Colour Design Method
doi https://doi.org/10.52842/conf.ecaade.2017.2.721
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 721-728
summary Designing colours for architecture with digital tools is still a challenging topic. Especially for customers and students the perception of a full-scale coloured interior room is hard to imagine. This paper presents a software prototype and a small user study, which addresses the colour design process with professional digital tools and a virtual reality head mounted device (Oculus Rift DK2). The user can navigate within an imported three-dimensional model freely and change colour, texture and light properties with a real-time updated radiosity visualization. The presented user study compares a screen based working method with the developed virtual reality based design support and interaction method.
keywords Virtual Reality; Colour; Design Support; Real-time; VR-glasses
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2017_131
id caadria2017_131
authors Abe, U-ichi, Hotta, Kensuke, Hotta, Akito, Takami, Yosuke, Ikeda, Hikaru and Ikeda, Yasushi
year 2017
title Digital Construction - Demonstration of Interactive Assembly Using Smart Discrete Papers with RFID and AR codes
doi https://doi.org/10.52842/conf.caadria.2017.075
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 75-84
summary This paper proposes and examines a new way of cooperation between human workers and machine intelligence in architectural scale construction. For the transfer of construction information between the physical and digital world, mature technologies such as Radio Frequency IDentifier (RFID), and emerging technologies like Augmented Reality (AR) are used in parallel to supplement each other. Dynamic data flow is implemented to synchronize digital and physical models by following the ID signatures of individual building parts. The contributions of this paper includes the demonstration of current technological limitations, and the proposal of a hybrid system between human and computer, which is tested in order to explore the possibilities of digitally enhanced construction methods.
keywords Digital Construction; Augmented Reality; Human-Machine interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715101
id ijac201715101
authors Bieg, Kory and Clay Odom
year 2017
title Lumifoil and Tschumi: Virtual projections and architectural interventions
source International Journal of Architectural Computing vol. 15 - no. 1, 6-17
summary This article introduces the theoretical and technical framework for the design of a temporary rooftop canopy on the red generator—one of the buildings designed by Bernard Tschumi for the Florida International University School of Architecture. The project, Lumifoil, was designed using both top-down and bottom-up computational techniques, including surface modeling via projected geometries and scripted cellular subdivisions and assemblies. Lumifoil attempts to synthesize these two often-conflicting design approaches into a generative design process which leverages context, form, surface, and structure as affective and effective actors. Lumifoil is the result of a design methodology which is both active and reactive to existing conditions of the site and new opportunities afforded by the program. It is contextual in its top-down relationship to Tschumi’s existing building and theory, generative in how details emerge bottom-up through scripts which lack any reference to site, and emergent in the resulting synthetic processes and effects which are produced. Through this methodological development, the project both tracks and responds to popular architectural theory and design from the mid-1990s to today. The theoretical underpinnings of the project build upon the idea that the actual (the real-life physical manifestation of matter) and the virtual (the potential for an object to be) are two constantly shifting paradigms in which design processes can intervene to help develop an architectural solution from a range of possibilities. The technical aspect of the project includes the collaborative workflow between the architecture offices of OTA+ and studio MODO with Arup Engineers to resolve structural issues using parametric modeling tools and structural analysis software. The final project is entirely parametric and fabrication is completely automated.
keywords Tschumi, Parametric, Installation, Generative, Projection
series other
type normal paper
email
last changed 2019/08/02 08:16

_id ecaade2017_002
id ecaade2017_002
authors Costa, Fábio, Eloy, Sara, Sales Dias, Miguel and Lopes, Mariana
year 2017
title ARch4models - A tool to augment physical scale models
doi https://doi.org/10.52842/conf.ecaade.2017.1.711
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-718
summary This paper focus on the development and evaluation of a computer tool that enriches physical scale models of buildings, which are commonly used during architecture and civil engineering design processes. The main goal of this work is to enable designers, namely architects, to use the affordances of the physical scale models, by enhancing them with digital characteristics that can be easily changed, allowing an enriched interaction of the designer with such models. Our in-house developed Augmented Reality tool, referred to as ARch4models, augments the user experience with visual features and interactive capabilities, not possible to accomplish with physical models (see this video in https://goo.gl/5zbdTQ). The tool allows the coherent registration between the real and the digital in the same space. Satisfaction evaluation studies were conducted that have shown that ARch4models improves the building design process when compared with a traditional methodology employing solely physical scale models.
keywords augmented reality; architecture; physical scale model; 3D model; AEC design process
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_044
id ecaade2017_044
authors Fernando, Shayani, Reinhardt, Dagmar and Weir, Simon
year 2017
title Simulating Self Supporting Structures - A Comparison study of Interlocking Wave Jointed Geometry using Finite Element and Physical Modelling Methods
doi https://doi.org/10.52842/conf.ecaade.2017.2.177
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 177-184
summary Self-supporting modular block systems of stone or masonry architecture are amongst ancient building techniques that survived unchanged for centuries. The control over geometry and structural performance of arches, domes and vaults continues to be exemplary and structural integrity is analysed through analogue and virtual simulation methods. With the advancement of computational tools and software development, finite and discrete element modeling have become efficient practices for analysing aspects for economy, tolerances and safety of stone masonry structures. This paper compares methods of structural simulation and analysis of an arch based on an interlocking wave joint assembly. As an extension of standard planar brick or stone modules, two specific geometry variations of catenary and sinusoidal curvature are investigated and simulated in a comparison of physical compression tests and finite element analysis methods. This is in order to test the stress performance and resilience provided by three-dimensional joints respectively through their capacity to resist vertical compression, as well as torsion and shear forces. The research reports on the threshold for maximum sinusoidal curvature evidenced by structural failure in physical modelling methods and finite element analysis.
keywords Mortar-less; Interlocking; Structures; Finite Element Modelling; Models
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_213
id ecaade2017_213
authors Fioravanti, Antonio, Novembri, Gabriele and Rossini, Francesco Livio
year 2017
title Improving Proactive Collaborative Design Through the Integration of BIM and Agent-Based Simulations
doi https://doi.org/10.52842/conf.ecaade.2017.1.103
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 103-108
summary Traditional design paradigms take into account phases as the process were subdivided rigidly in boxes to which pertain specific building entities, actors and LODs. In reality the process of design, a building f.i., it is not so much organized in series, nor designers deal with just a specific LOD. The process is intertwined and actors mix various type entities with different accuracy. To manage these problems, we need a new paradigm and new tools able to take immediately into account satisfied/unsatisfied constraints, to trig on consequences of choices made as far as it is possible and to link fluently and bidirectionally a 2nd layer of building abstraction (BIM) with a 3rd one of knowledge abstraction. An on-the-fly link has been established between BIM and a swarm of agent-based simulations.
keywords Agent-Based Modelling and Simulation; Behavioural Simulation; BIM ; Agent-Based Building Modelling
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_556235 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002