CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id sigradi2017_000
id sigradi2017_000
authors Roco Ibaceta, Miguel
year 2017
title Resilience Design
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017
summary The chosen theme, Resilience Design, evidences the researchers’ concern about issues related to our reality of climate change and natural disasters, associated with the states of vulnerability and risk, having wide effects on society and the way we inhabit territories. These matters are fundamental and highly relevant for the disciplines and in the fields of design and architecture, as they are also important for collaborative work with areas emerging from the arts and human sciences. Thinking about Resilience Design is to set ourselves on new scenarios of reflection and action which, supported by transdisciplinary thinking and collaborative design, allow us to develop a new approach towards our territories and their demands, one that is more contextualized and adjusted to their current and future requirements, a starting point to establish the key elements to drive change in our cities and society. In this sense, technology and digital development, parametric design, the use of Information and Communication Technologies (ICT) and Geographic Information Systems (GIS), in addition to work done with Building Information Modelling (BIM), among many others, have been delivering an enormous amount of tools and possibilities of interaction with living in society, leading to a substantive change in the way of understanding and relating to the built environment and the territories where buildings are sit. This demands a strong commitment to Social Responsibility from our disciplines, besides the necessary landing of cutting-edge technological and digital research and development onto our diverse realities, in order for them to be put at the service of communities in vulnerable environments or with a marked condition of risk, which are subject to constant processes of resilience. Working on Resilience Design allows to support research and productive processes, plus the appearance of new technologies in interdisciplinary contexts, which greatest value is to impact the processes of teaching and professional practice in the different areas related to human habitation. The new professionals will have to take action and immerse themselves into these new scenarios of change and constant adjustment.
series SIGRADI
email
last changed 2021/03/28 19:59

_id sigradi2017_014
id sigradi2017_014
authors Bonilla Vallejo, Mario Andres; Denise Mônaco dos Santos, Douglas Lopes de Souza, Pena Martinez, Andressa Carmo
year 2017
title La práctica de la colaboración en los procesos digitales de diseño: Investigación - Acción [The practice of collaboration in digital processes design: Investigation action]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.106-113
summary This paper aims to present reflections on the practice of collaboration in the project JAM! Diálogos emergentes e processos digitais de projeto. For this, we analyzed the interaction and communication of a geographically distributed work team in Brazil, through a research - action methodology. Here be considered as main aspects the digital tools and technologies that support the development of remote architectural projects. Therefore, advances in the CSCW area taken into account for such analysis. This work linked to a master's research that be carry out at the Federal University of Viçosa
keywords Process design; Collaboration; Groupware; Collective intelligence.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_173
id ecaade2017_173
authors Buš, Peter, Hess, Tanja, Treyer, Lukas, Knecht, Katja and Lu, Hangxin
year 2017
title On-site participation linking idea sketches and information technologies - User-driven Customised Environments
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 543-550
doi https://doi.org/10.52842/conf.ecaade.2017.1.543
summary The paper introduces the methodology related to the topic of citizen-driven urban design and revises the idea of on-site participation of end-users, which could prospectively lead to customisation of architectural and urban space in a full-scale. The research in the first phase addresses the engagement of information technologies used for idea sketching in participatory design workshop related to local urban issues in the city of Chur in Switzerland by means of the Skity tool, the sketching on-line platform running on all devices. Skity allows user, which can be individual citizens or a community, to sketch, build, and adapt their ideas for the improvement of an urban locality. The participant is the expert of the locality because he or she lives in this place every day. The content of this paper is focused on the participatory design research project conducted as a study at the ETH Zürich and the Hochschule für Technik und Wirtschaft HTW in Chur in collaboration with Future Cities Laboratory in Singapore, mainly concentrated on the first step of the methodological approach introduced here.
keywords responsive cities; urban mass-customisation; idea sketching; ideation; on-site participation; citizen design science
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_140
id ecaade2017_140
authors Eversmann, Philipp
year 2017
title Digital Fabrication in Education - Strategies and Concepts for Large-Scale Projects
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 333-342
doi https://doi.org/10.52842/conf.ecaade.2017.1.333
summary The consequences of automation technology on industry are currently widely discussed in terms of future tasks, work organisation and working environments. Even though various novel education programmes specialise in digital fabrication, relatively little has been written on concepts for a deeper integration of digital technologies in the architectural curriculum. This paper gives an overview of interdisciplinary educational approaches and digital project development techniques and describes a teaching method featuring intensive collaboration with research and industry, an iterative teaching method employing digital production of large-scale prototypes and a moderated self-learning process. We describe two examples of teaching initiatives in particular that were undertaken at TU Munich and ETH Zurich and analyse their results in terms of physical outcomes, teaching accomplishments, resource efficiency and connection to research. We discuss the relationship between necessary teaching intensity, project size and complexity of digital fabrication equipment and conclude by giving an outlook for future initiatives.
keywords interdisciplinary collaboration; iterative process; self-learning
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_165
id caadria2017_165
authors Kalantar, Negar, Borhani, Alireza and Akleman, Ergun
year 2017
title A Simple Fabrication System for Unfolding Complex Architectural Surfaces
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 767-776
doi https://doi.org/10.52842/conf.caadria.2017.767
summary In this research, we explore the implementation of panels with a single bending direction as cylindrical surfaces; in so doing, we present our ongoing research, focusing on finding ways to simply and affordably address the problem of constructability of double-curved structures. By encoding 3D freeform surface information into a 2D workflow, our in-house software (named UNFOLDING) breaks down complex mesh structures into a number of discrete and flat quadrilaterals that can be translated into a fabrication layout. UNFOLDING provides a practical way of linking the process of production and assembly to freeform architectural design. After introducing UNFOLDING in two design studios at Texas A&M University, freshman architecture students used laser-cut quadrilateral panels to design and construct several complex forms with positive or negative Gaussian curvatures.
keywords Complex architectural surfaces; digital fabrication; quad-edge panels; unfolding; 2-manifold meshes
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_169
id ecaade2017_169
authors Zupancic, Tadeja, Verbeke, Johan, Herneoja, Aulikki and Achten, Henri
year 2017
title Competences for Digital Leadership in Architecture
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 289-296
doi https://doi.org/10.52842/conf.ecaade.2017.1.289
summary The use of "digital technology" - computer software, new material application, rapid prototyping, Computer Aided Manufacturing, Virtual Reality, collaborative design - is no longer a novel and innovative aspect of architectural design. In fact, many offices and architects use a varied mix of these technologies in their daily practice. We can observe that digital technology has become a mature part of architectural practice. In this paper, we want to outline an outstanding level of excellence in the use of digital technologies that enable certain widely acknowledged offices (for example Foster and Partners, UN Studio, BIG, and so on) to take their design work to high degree of quality and performance. We call this level and phenomenon "digital leadership." Digital leadership goes beyond technical digital skills. It is an integrated and holistic approach that makes no distinction between "architectural design" and "digital technology" and in fact creates a new blend of both. We propose that digital leadership has six key areas: Technological Ecologies; Creativity, Knowledge Processes, and Experimentation; Design and Research; Human Resources and Leadership; Collaborative and Explorative Environments and Impact of Digital Leadership. These are discussed in more detail in this paper.
keywords architecture; digital leadership competences; research by design; creative practice; design research; impact
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
doi https://doi.org/10.52842/conf.acadia.2017.018
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_52
id acadia17_52
authors Ajlouni, Rima
year 2017
title Simulation of Sound Diffusion Patterns of Fractal-Based Surface Profiles
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 52-61
doi https://doi.org/10.52842/conf.acadia.2017.052
summary Acoustical design is one of the most challenging aspects of architecture. A complex system of competing influences (e.g., space geometry, size, proportion, material properties, surface detail, etc.) contribute to shaping the quality of the auditory experience. In particular, architectural surfaces affect the way that sound reflections propagate through space. By diffusing the reflected sound energy, surface designs can promote a more homogeneous auditory atmosphere by mitigating sharp and focused reflections. One of the challenges with designing an effective diffuser is the need to respond to a wide band of sound wavelengths, which requires the surface profile to precisely encode a range of detail sizes, depths and angles. Most of the available sound diffusers are designed to respond to a narrow band of frequencies. In this context, fractal-based surface designs can provide a unique opportunity for mitigating such limitations. A key principle of fractal geometry is its multilevel hierarchical order, which enables the same pattern to occur at different scales. This characteristic makes it a potential candidate for diffusing a wider band of sound wavelengths. However, predicting the reflection patterns of complicated fractal-based surface designs can be challenging using available acoustical software. These tools are often costly, complicated and are not designed for predicting early sound propagation paths. This research argues that writing customized algorithms provides a valuable, free and efficient alternative for addressing targeted acoustical design problems. The paper presents a methodology for designing and testing a customized algorithm for predicting sound diffusion patterns of fractal-based surfaces. Both quantitative and qualitative approaches were used to develop the code and evaluate the results.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id ecaade2017_061
id ecaade2017_061
authors Castellari, Dario and Erioli, Alessio
year 2017
title Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 661-670
doi https://doi.org/10.52842/conf.ecaade.2017.1.661
summary Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.
keywords tectonics; combinatorics; unit-based system; branching network
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2017_031
id sigradi2017_031
authors Chaves Galvão, Carolina M.; Fernando Galvão, Eliton Siqueira
year 2017
title Patrimônio (Moderno) Digital como ação resiliente [Digital (Modern) Heritage as resilience action]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.219-222
summary The Modern Heritage in Aracaju is still a little researched subject and the available works need to be reviewed and expanded. This paper presents the first results of a work dedicated to the analysis and registration of the Modern Heritage as a resilient action to the losses suffered, so that this heritage will resist in time and persist in the memory, enabling future research and conservation actions. The case study was the Hora Oliveira residence, which was modeled using Revit © from the development of a template, in which information about original materials and pathologies present in the building were inserted.
keywords Digital heritage; Modern Architecture; Aracaju; Hora Oliveira residence.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
doi https://doi.org/10.52842/conf.caadria.2019.2.451
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_195
id ecaade2017_195
authors Collins, Jeffrey and Gentry, Russell
year 2017
title KBAD - Knowledge Base for Architectural Detailing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 657-666
doi https://doi.org/10.52842/conf.ecaade.2017.2.657
summary This paper examines the current state of the conventional Design-Bid-Build project, wherein design intentions are manually translated to construction directives by subcontractors based on industry-specific details. This process exacerbates a dilemma in design and construction; that often the designer may be unaware of certain details that are involved in fabricating and assembling building components. Research for Knowledge Base for Architectural Detailing (KBAD) proposes a system that takes advantage of current CAD software and programming language, bringing together the information provided by and important to the design team with the data required by the subcontractor to accurately produce architectural components, during the design phases of a project. The trade of architectural precast concrete is used to demonstrate the potential of such a system. Solid modeling, visual scripting, and programming language techniques working towards KBAD are described. Possible variations of architectural precast concrete panels, detailed with window openings, reveals, and embed plates, are presented.
keywords BIM; HCI; Collaboration
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2017_041
id sigradi2017_041
authors Croffi, Juliana; Henrique Lattes, Márcio Guirado, Barbara Maia, Milene Mamede
year 2017
title 22°48’54’’ - Sob a Luz do Sol: Apropriação do Trajeto Solar para Explorar a Singularidade de Experiências [22º48'54" - Under the Sunlight: Appropriation of the Solar Path as way to Explore the Singularity of Experiences]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.280-286
summary 22º48'54" - Under the Sunlight is an architectural installation, an experimentation product of an academic research using parametric algorithms, computational design and digital fabrication in it's conception and execution. It's title and form are answers to the sun path and it's incidence in a specific place - the Exploratory Science Museum at Unicamp (State University of Campinas). The installation is a honeycomb structure of twelve unique modules digitally fabricated from MPU, a composed board of polyethylene and aluminium, oriented with the different sun positions during the day in Campinas. Five of those twelve modules are covered in panels with different openings, which provide different shading patterns according with the evolution of the day.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_293
id ecaade2017_293
authors D'Amico, Alessandro and Curr?, Edoardo
year 2017
title From TSL survey to HBIM, issues on survey and information modeling implementation for the built heritage - The case study of the Temple di Bacco Ravello
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 39-48
doi https://doi.org/10.52842/conf.ecaade.2017.2.039
summary The research presents an application of HBIM to the recovery process and design, which allows to highlight some potentialities and criticalities of what has become an important instrument in the documentation and conservation of architectural heritage. The object of the research is the Temple di Bacco, built by Lord Girmthorpe as his final resting place and located within the gardens of Villa Cimbrone, Ravello (SA).The survey has presented several difficulties due to the particular configuration of the site, very steep, with very limited space around the object. If on the one hand the TLS obvious to the lack of edges of cylindrical objects, on the other hand it poses problems for the tangency of the scan points. The Scan to BIM methodology has proven to be effective and has allowed to overcome the difficulties associated with the conformation of the artefact and of the site, in the study of the analyzed object. In conclusion, some assessments and results are reported, aimed at sharing and defining strategies and methodologies of scientific validity regarding the application of the HBIM model to a process of recovery and consolidation of an existing building object.
keywords BIM; HBIM; Built Heritage; TLS; Scan to BIM
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_116
id ecaade2017_116
authors Dickey, Rachel
year 2017
title Ontological Instrumentation in Architecture - A Collection of Prototypes Engaging Bodies and Machines from the Inside Out
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 667-672
doi https://doi.org/10.52842/conf.ecaade.2017.2.667
summary This paper provides a theoretical discourse on ontological instruments in design by exploring the ways in which design and technology might help get us back to an understanding of our own humanity. The intent of this theoretical discourse is to illuminate the possibilities of what can be, by looking at history as a way to see the world with perspective and as a predictor of what may happen. Another objective is to demonstrate the proof of those possibilities through the presentation of two design research projects which actualize those ideas. The first project is a prototype for an interactive chair that explores the calming effects of conscious and synchronized breathing. The second project is a reinterpretation of the veil and explores the relationship between the individual and the public. Both projects are artistic and performative in character and are embedded in a theoretical discourse on ontological instruments and investigate the opportunities of interaction of the human body with the environment moderated by technology.
keywords prosthesis; cyborgs; robots; technology; humanity; culture
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia17_222
id acadia17_222
authors Dierichs, Karola; Wood, Dylan; Correa, David; Menges, Achim
year 2017
title Smart Granular Materials: Prototypes for Hygroscopically Actuated Shape-Changing Particles
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 222-231
doi https://doi.org/10.52842/conf.acadia.2017.222
summary Hygroscopically Actuated Granular Materials are a new class of designed granular materials in architecture. Granular materials are large numbers of particles that are only in loose contact with each other. If the individual particle in such a granular material is defined in its geometry and material make-up, one can speak of a designed granular material. In recent years these designed granular materials have been explored as architectural construction systems. Since the particles are not bound to each other, granular materials are rapidly reconfigurable and recyclable. Yet one of the biggest assets of designed granular materials is the fact that their overall behavior can be designed by altering the geometry or material make-up of the individual composing particles. Up until now mainly non-actuated granular materials have been investigated. These are designed granular materials in which the geometry of the particle stays the same over time. The proposed Hygroscopically Actuated Granular Materials are systems consisting of time-variable particle geometries. Their potential lies in the fact that one and the same granular system can be designed to display different mechanical behaviors over the course of time. The research presented here encompasses three case studies, which complement each other both with regard to the development of the particle system and the applied construction processes. All three cases are described both with regard to the methods used and the eventual outcome aiming at a potential design system for Hygroscopically Actuated Granular Materials. To conclude, these results are compared and directions of further research are indicated.
keywords material and construction; smart materials; smart assembly/construction
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2022_398
id ecaade2022_398
authors Dzurilla, Dalibor and Achten, Henri
year 2022
title What’s Happening to Architectural Sketching? - Interviewing architects about transformation from traditional to digital architectural sketching as a communicational tool with clients
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 389–398
doi https://doi.org/10.52842/conf.ecaade.2022.1.389
summary The paper discusses 23 interviewed architects in practice about the role of traditional and digital sketching (human-computer interaction) in communication with the client. They were selected from 1995 to 2018 (the interval of graduation) from three different countries: the Czech Republic (CR), Slovakia (SR), Netherland (NR). To realize three blending areas that impact the approach to sketching: (I) Traditional hand and physical model studies (1995-2003). (II)Transition form - designing by hand and PC (2004–2017). (III) Mainly digital and remote forms of designing (2018–now). Interviews helped transform 31 “parameters of tools use” from the previous theoretical framework narrowed down into six main areas: (1) Implementation; (2)Affordability; (3)Timesaving; (4) Drawing support; (5) Representativeness; (6) Transportability. Paper discusses findings from interviewees: (A) Implementation issues are above time and price. (B) Strongly different understanding of what digital sketching is. From drawing in Google Slides by mouse to sketching in Metaverse. (C) Substantial reduction of traditional sketching (down to a total of 3% of the time) at the expense of growing responsibilities. (D) 80% of respondents do not recommend sketching in front of the client. Also, other interesting findings are further described in the discussion.
keywords Architectural Sketch, Digital Sketch, Effective Visual Communication
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_152548 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002