CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 574

_id caadria2017_041
id caadria2017_041
authors Tan, Rachel, Sia, Chin Kiat, Tee, Yong Kiat, Koh, Kendall and Dritsas, Stylianos
year 2017
title Developing Composite Wood for 3D-Printing
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 831-840
doi https://doi.org/10.52842/conf.caadria.2017.831
summary We present the initial findings of our research project aiming at development of a 3D-printing process for wood composites. The 3D-printing method employed is based on material extrusion principle and utilizes industrial robotics for position and motion control. The unique characteristic of our approach is in the development of the material where we employ exclusively organic components for both the matrix and reinforcement; a decision informed by prioritizing environmental considerations.
keywords Digital Fabrication; Additive Manufacturing; 3D Printing; Wood Composites; Robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
doi https://doi.org/10.52842/conf.caadria.2020.1.873
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2017_419
id cf2017_419
authors Dickey, Rachel
year 2017
title Soft Computing in Design: Developing Automation Strategies from Material Indeterminacies
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 419-430.
summary Integrating concepts of soft computation into advanced manufacturing and architecture means perceiving the element of chance not as a hindrance, but as an opportunity. The projects examined in this manuscript explore opportunities for integrating material indeterminacy into advanced manufacturing by pairing a certain degree material unpredictability with the rigid order of machine control. The three projects described investigate three common categories of automated tooling including additive processes, subtractive processes and molding / casting processes. Each project begins with the question, what opportunities might arise from the mediation between material volition and computational control? By embracing indeterminate material results and taking an optimistic stance on chance and uncertainty, which are usually treated as problems rather than values, the intent is to provide ways for automating unique material effects and explore the opportunities for integrating soft computing in design.
keywords Robotics, 3d Printing, Digital Fabrication, Automation, Indeterminacy
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
doi https://doi.org/10.52842/conf.caadria.2017.841
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2020_184
id ecaade2020_184
authors Kycia, Agata and Guiducci, Lorenzo
year 2020
title Self-shaping Textiles - A material platform for digitally designed, material-informed surface elements
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 21-30
doi https://doi.org/10.52842/conf.ecaade.2020.2.021
summary Despite the cutting edge developments in science and technology, architecture to a large extent still tends to favor form over matter by forcing materials into predefined, often superficial geometries, with functional aspects relegated to materials or energy demanding mechanized systems. Biomaterials research has instead shown a variety of physical architectures in which form and matter are intimately related (Fratzl, Weinkamer, 2007). We take inspiration from the morphogenetic processes taking place in plants' leaves (Sharon et al., 2007), where intricate three-dimensional surfaces originate from in-plane growth distributions, and propose the use of 3D printing on pre-stretched textiles (Tibbits, 2017) as an alternative, material-based, form-finding technique. We 3D print open fiber bundles, analyze the resulting wrinkling phenomenon and use it as a design strategy for creating three-dimensional textile surfaces. As additive manufacturing becomes more and more affordable, materials more intelligent and robust, the proposed form-finding technique has a lot of potential for designing efficient textile structures with optimized structural performance and minimal usage of material.
keywords self-shaping textiles; material form-finding; wrinkling; surface instabilities; bio-inspired design; leaf morphogenesis
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2017_059
id sigradi2017_059
authors Naboni, Roberto; Anja Kunic
year 2017
title Design and Additive Manufacturing of Lattice-based Cellular Solids at Building Scale
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.404-410
summary The amounts of material that is being extracted, harvested and consumed in the last decades is increasing tremendously and bringing to the serious problem of resource scarcity. As a direct consequence to this claim, designers are challenged to rethink architecture and develop new ways of confronting with materials. A potential answer to this problem is the exploration of computational logics for architectural design and fabrication inspired by the observation of biological formations. This work explores how the biological model of bone microstructure can be applied to a larger scale architecture that is structurally responsive, by means of computational design and Additive Manufacturing.
keywords Functionally Graded Trabecular Tectonics, Digital fabrication, Additive Manufacturing, Computational Design, Biomimetics
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia17_660
id acadia17_660
authors Zivkovic, Sasa; Battaglia, Christopher
year 2017
title Open Source Factory: Democratizing Large-Scale Fabrication Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 660- 669
doi https://doi.org/10.52842/conf.acadia.2017.660
summary Open source frameworks have enabled widespread access to desktop-scale additive manufacturing technology and software, but very few highly hackable large-scale or industrial open source equipment platforms exist. As research trajectories continue to move towards large-scale experimentation and full-scale building construction in robotic and digital fabrication, access to industrial fabrication equipment is critical. Large-scale digital fabrication equipment usually requires extensive start-up investments which becomes a prohibitive factor for open research. Expanding on the idea of the Fab Lab as well as the RepRap movement, the Open Source Factory takes advantage of disciplinary expertise and trans-disciplinary knowledge in construction machine design accumulated over the past decade. With the goal to democratize access to large-scale industrial fabrication equipment, this paper outlines the creation of two full-scale fabrication systems: a RepRap based large-scale 3-axis open source CNC gantry and a 6-axis industrial robot system based on a decommissioned KUKA KR200/2. Both machines offer radically different economic frameworks for implementing research in advanced full scale robotic fabrication into contexts of pedagogy, the research lab, practice, or small scale local building industry. This research demonstrates that such equipment can be implemented by building on the current knowledge base in the field. If industrial robots and other large-scale fabrication tools become accessible for all, the collective sharing of research and the development of new ideas in full-scale robotic building construction can be substantially accelerated.
keywords education, society & culture; CAM; prototyping; construction/robotics; education; digital heritage
series ACADIA
email
last changed 2022/06/07 07:57

_id acadia17_522
id acadia17_522
authors Sarafian, Joseph; Culver, Ronald; Lewis, Trevor S.
year 2017
title Robotic Formwork in the MARS Pavilion: Towards The Creation Of Programmable Matter
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 522- 533
doi https://doi.org/10.52842/conf.acadia.2017.522
summary The proliferation of parametric tools has allowed for the design of previously impossible geometry, but the construction industry has failed to keep pace. We demonstrate the use of industrial robots to disrupt the ancient process of casting concrete and create an adjustable formwork capable of generating various cast components based on digital input, crafting a new approach to “programmable matter.” The resulting research delineates a novel methodology to facilitate otherwise cost-prohibitive, even impossible design. The MARS Pavilion employs this methodology in a building-sized proof of concept where manipulating fabric with industrial robots achieves previously unattainable precision while casting numerous connective concrete components to form a demountable lattice structure. The pavilion is the result of parametric form finding, in which a catenary structure ensures that the loads are acting primarily in compression. Every concrete component is unique, yet can be assembled together with a 1/16-inch tolerance. Expanding Culver & Sarafian’s previous investigations, industrial robot arms are sent coordinates to position fabric sleeves into which concrete is poured, facilitating a rapid digital-to-physical casting process. With this fabrication method, parametric variation in design is cost-competitive relative to other iterative casting techniques. This digital breakthrough necessitated analogue material studies of rapid-setting, high-strength concrete and flexible, integral reinforcing systems. The uniquely shaped components are coupled with uniform connectors designed to attach three limbs of concrete, forming a highly stable, compressive hex-grid shell structure. A finite element analysis (FEA) was a critical step in the structural engineering process to simulate various load scenarios on the pavilion and drive the shape of the connective elements to their optimal form.
keywords material and construction; fabrication; form finding
series ACADIA
email
last changed 2022/06/07 07:57

_id sigradi2017_049
id sigradi2017_049
authors Braida, Frederico; Cheyenne Azevedo, Izabela Ferreira, Janaina Castro, Janaina Castro
year 2017
title Projetando com blocos de montar: Residęncias mínimas no contexto da cidade contemporânea [Design with building blocks: Compact homes in the context of the contemporary city]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.335-343
summary This paper presents the results of the creation of a game, composed of building blocks, conceived as didactic material for the minimum residences design. The game was designed to be produced by rapid prototyping and digital manufacturing resources. Methodologically, the research was based on both a literature review and an empirical research on the use of a set of building blocks. The text shows the critical analysis and reflections on the results achieved with a workshop entitled "Designing compact homes with building blocks".
keywords Building blocks; Rapid prototyping; Digital fabrication; Education; Architecture.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_172
id ecaade2017_172
authors Brand?o, Filipe, Paio, Alexandra and Whitelaw, Christopher
year 2017
title Mapping Mass Customization
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 417-424
doi https://doi.org/10.52842/conf.ecaade.2017.2.417
summary Mass customization (MC) and personal fabrication (PF) are current relevant topics in architecture offices practice and schools design research. Architects are adopting information based design and production techniques as a response to architectural century challenges. However, is not clear how various authors used and transformed the concept in practice, research and industry after three decades since the MC term was introduced by Davis (1987). Therefore, is essential to map the most relevant works in the field in relation to production and design control. The paper presents some of the results of the ongoing study through an evolving map that aims to visualize relationships, layering complexity and revealing difference.
keywords Mass Customization; Personal Fabrication; Housing; Map
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
doi https://doi.org/10.52842/conf.acadia.2017.164
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_027
id ecaade2017_027
authors Carl, Timo, Schein, Markus and Stepper, Frank
year 2017
title Sun Shades - About Designing Adaptable Solar Facades
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 165-174
doi https://doi.org/10.52842/conf.ecaade.2017.2.165
summary External shading structures are a well-established typology for reducing solar heat loads. A major disadvantage is their inflexible nature, blocking views from inside and desired solar radiation for seasons with less sunshine hours. An adaptive approach on the other end can accommodate dynamic environmental exchange and user control. Furthermore, kinetic movement has great potential to create expressive spatial structures. However, such typologies are inherently complex. This paper presents the design process for two novel adaptive façade typologies, conducted on an experimental level in an educational context. Moreover, we will discuss the conception of a suitable methodological framework, which we applied to engage the complexity of this design task. Thereby we will highlight the importance of employing various methods, combining analogue and computational models not in a linear sequence, but rather in an overlapping, iterative way to create an innovation friendly design setting. The Sun Shades project offers insight into the relationships between design potentials inherent in adaptable structures and the advantages and limitation of computational methods employed to tackle them.
keywords computational design methodology; performance-based design; associative geometry modelling; solar simulation; physical form-finding; design theory
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_244
id ecaade2017_244
authors Chaltiel, Stephanie, Bravo, Maite and Chronis, Angelos
year 2017
title Digital fabrication with Virtual and Augmented Reality for Monolithic Shells
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 211-218
doi https://doi.org/10.52842/conf.ecaade.2017.2.211
summary The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design and fabrication techniques, such as the methods chosen for the suitable parametrization of the geometry based on materiality characteristics and construction constrains, the digital optimization criteria of variables, and the translation of the relevant code used for digital fabrication. Specifically, the translation from the digital to the physical when a definite materiality appears during the digital fabrication process proves to be a crucial step, which is typically approached as a linear and predetermined sequence. This often-difficult step offers the potential of embedding a certain level of interactivity between the fabricator and the materialized model during the fabrication process in order to allow for real time adjustments or corrections. This paper features monolithic shell construction processes that promote a simple interface of live interaction between the fabricator and the tool control during the digital fabrication process. The implementation of novel digital and physical methods will be explored, offering the possibility of being combined with automated fabrication actions controlled by real time inputs with virtual reality [VR] influenced by 3d scanning and 3d CAD programs, and the possibility of incorporating augmented reality [AR].
keywords virtual reality; augmented reality; monolithic shells
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
doi https://doi.org/10.52842/conf.caadria.2017.467
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
doi https://doi.org/10.52842/conf.acadia.2017.212
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id caadria2017_069
id caadria2017_069
authors Dritsas, Stylianos, Chen, Lujie and Sass, Lawrence
year 2017
title Small 3D Printers / Large Scale Artifacts - Computation for Automated Spatial Lattice Design-to-Fabrication with Low Cost Linear Elements and 3D Printed Nodes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 821-830
doi https://doi.org/10.52842/conf.caadria.2017.821
summary The presented process enables users to design, fabricate and assemble spatial lattices comprised of linear stock materials such as round section timber, aluminum or acrylic dowels and complex 3D printed joints. The motivation for the development of this application is informed by the incredible availability of low cost 3D printers which enable anyone to produce small scale artifacts; deploying rapid prototyping to achieve larger scale artifacts than the machine's effective work envelope is a challenge for additive manufacturing; and the trend in the design computing world away highly technical specialized software towards general public applications.
keywords Design Computation; Digital Fabrication; 3D Printing; Spatial Lattices; Design to Production
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2017_457
id cf2017_457
authors Erdine, Elif; Kallegias, Alexandros; Lara Moreira, Angel Fernando; Devadass, Pradeep; Sungur, Alican
year 2017
title Robot-Aided Fabrication of Interwoven Reinforced Concrete Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 457.
summary This paper focuses on the realization of three-dimensionally interwoven concrete structures and their design process. The output is part of an ongoing research in developing an innovative strategy for the use of robotics in construction. The robotic fabrication techniques described in this paper are coupled with the computational methods dealing with geometry rationalization and material constraints among others. By revisiting the traditional bar bending techniques, this research aims to develop a novel approach by the reduction of mechanical parts for retaining control over the desired geometrical output. This is achieved by devising a robotic tool-path, developed in KUKA|prc with Python scripting, where fundamental material properties, including tolerances and spring-back values, are integrated in the bending motion methods via a series of mathematical calculations in accord with physical tests. This research serves to demonstrate that robotic integration while efficient in manufacturing it also retains valid alignment with the architectural design sensibility.
keywords Robotic fabrication, Robotic bar bending, Concrete composite, Geometry optimization, Polypropylene formwork
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_132
id caadria2017_132
authors Feist, Sofia, Ferreira, Bruno and Leit?o, António
year 2017
title Collaborative Algorithmic-based Building Information Modelling
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 613-622
doi https://doi.org/10.52842/conf.caadria.2017.613
summary Algorithmic-based Building Information Modelling (A-BIM) allows the development of BIM models through algorithms. In a collaborative environment, A-BIM requires management strategies to deal with concurrent development of architectural projects. However, despite there being several tools that support this type of collaborative work, they are not appropriate for A-BIM because: (1) they track changes in the generated model instead of the code where the changes originate from, and (2) they are vendor-specific while A-BIM models might be generated for different BIM applications. In this paper, we discuss the use of Version Control (VC) for project management and concurrent development of A-BIM projects. We evaluate VC for A-BIM through a series of scenarios in the context of a case study.
keywords Algorithmic Design; Programming; Algorithmic-based Building Information Modelling; Version Control; Collaborative Design
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2017_044
id ecaade2017_044
authors Fernando, Shayani, Reinhardt, Dagmar and Weir, Simon
year 2017
title Simulating Self Supporting Structures - A Comparison study of Interlocking Wave Jointed Geometry using Finite Element and Physical Modelling Methods
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 177-184
doi https://doi.org/10.52842/conf.ecaade.2017.2.177
summary Self-supporting modular block systems of stone or masonry architecture are amongst ancient building techniques that survived unchanged for centuries. The control over geometry and structural performance of arches, domes and vaults continues to be exemplary and structural integrity is analysed through analogue and virtual simulation methods. With the advancement of computational tools and software development, finite and discrete element modeling have become efficient practices for analysing aspects for economy, tolerances and safety of stone masonry structures. This paper compares methods of structural simulation and analysis of an arch based on an interlocking wave joint assembly. As an extension of standard planar brick or stone modules, two specific geometry variations of catenary and sinusoidal curvature are investigated and simulated in a comparison of physical compression tests and finite element analysis methods. This is in order to test the stress performance and resilience provided by three-dimensional joints respectively through their capacity to resist vertical compression, as well as torsion and shear forces. The research reports on the threshold for maximum sinusoidal curvature evidenced by structural failure in physical modelling methods and finite element analysis.
keywords Mortar-less; Interlocking; Structures; Finite Element Modelling; Models
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_489190 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002