CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 574

_id sigradi2017_000
id sigradi2017_000
authors Roco Ibaceta, Miguel
year 2017
title Resilience Design
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017
summary The chosen theme, Resilience Design, evidences the researchers’ concern about issues related to our reality of climate change and natural disasters, associated with the states of vulnerability and risk, having wide effects on society and the way we inhabit territories. These matters are fundamental and highly relevant for the disciplines and in the fields of design and architecture, as they are also important for collaborative work with areas emerging from the arts and human sciences. Thinking about Resilience Design is to set ourselves on new scenarios of reflection and action which, supported by transdisciplinary thinking and collaborative design, allow us to develop a new approach towards our territories and their demands, one that is more contextualized and adjusted to their current and future requirements, a starting point to establish the key elements to drive change in our cities and society. In this sense, technology and digital development, parametric design, the use of Information and Communication Technologies (ICT) and Geographic Information Systems (GIS), in addition to work done with Building Information Modelling (BIM), among many others, have been delivering an enormous amount of tools and possibilities of interaction with living in society, leading to a substantive change in the way of understanding and relating to the built environment and the territories where buildings are sit. This demands a strong commitment to Social Responsibility from our disciplines, besides the necessary landing of cutting-edge technological and digital research and development onto our diverse realities, in order for them to be put at the service of communities in vulnerable environments or with a marked condition of risk, which are subject to constant processes of resilience. Working on Resilience Design allows to support research and productive processes, plus the appearance of new technologies in interdisciplinary contexts, which greatest value is to impact the processes of teaching and professional practice in the different areas related to human habitation. The new professionals will have to take action and immerse themselves into these new scenarios of change and constant adjustment.
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2017_183
id caadria2017_183
authors Holzer, Dominik
year 2017
title Optimising Human Comfort in Medium-density Housing via Daylight and Wind Simulation
doi https://doi.org/10.52842/conf.caadria.2017.273
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 273-282
summary This paper explores the pedagogical context for the inclusion of daylight and wind simulation as part of architectural design-studio teaching. The author describes both challenges as well as opportunities encountered by architecture students who applied high-end technology for optimizing environmental conditions during the conceptual design of a residential project within a thirteen week studio. Students located their projects in an inner urban context in a 'Temperate' climate zone, meaning that they had to account for hot conditions in summer while considering wind-chill factors in winter. Based on the studio experience, the paper scrutinizes how students tackled Computational Fluid Dynamics (CFD) and daylight analysis on different scales of their project. The paper explores how the engagement with latest tools available to architecture students changes their ability to discuss building physics with engineers and question precedence typology. The author describes the pedagogical challenges when helping architecture students to overcome obstacles in communicating engineering aspects inherent to the design process.
keywords Environmental Analysis; CFD; Daylight Simulation; Design Pedagogy; Parametric Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
doi https://doi.org/10.52842/conf.acadia.2018.444
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2017_062
id caadria2017_062
authors Ji, Seung Yeul, Kim, Mi Kyoung and Jun, Han Jong
year 2017
title Campus Space Management Using a Mobile BIM-based Augmented Reality System
doi https://doi.org/10.52842/conf.caadria.2017.105
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 105-114
summary In South Korea, the changing paradigm of family composition toward single-person households and nuclear families has caused the decrease in number of students, which has led to the need for change in the qualitative, rather than quantitative, management of spaces and facilities on university campuses. In particular, since 2005, the merging of universities have accelerated, which has brought up the need for a system that facilitates the management of integrated university systems. Accordingly, universities now require efficient system operation based on three-dimensional and data visualization, unlike the document-based management of facilities and spaces in the past. Users lack a sense of responsibility for public facilities, causing difficulties such as energy waste and frequent movement, as well as damage and theft of goods. This study aims to form an AR-based interface using the ANPR algorithm, a computer vision technique, and the position-based data of the GPS. It also aims to build a campus space management system to overcome the limitations of current systems and to effectively and systematically manage integrated building data. In addition, for module test verification, the prototype is applied to actual campus spaces, and additional demands for campus space management in the AR application are identified and organized.
keywords augmented reality; Campus space management; BIM; CAFM (computer-aided facilities management); user experience (UX)
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_118
id caadria2017_118
authors Kocabay, Serkan and Alaçam, Sema
year 2017
title A Multi-Objective Genetic Algorithm Framework for Earlier Phases of Architectural Design - A Case Study
doi https://doi.org/10.52842/conf.caadria.2017.293
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 293-302
summary This paper presents an algorithmic framework proposal for implementation of a multi-objective genetic algorithm (MOGA) in architectural design process. Different than the previous studies, we introduce a dynamic and extendible modular framework for multiple objectives. The objective modules with different fitness functions are connected simultaneously in the Rhino/Octopus interface, after multiplication with a constant value or a variable. In this study, we discuss the potentials and limitations of MOGA in 3D form generation, implications of MOGA in a case study and the qualitative and quantitative changes in relation to the change of constant value/ the impact ratio of competing objectives. The outcomes of the case study are investigated based on its potentiality in providing feedback in the earlier phases of decision processes in design.
keywords multi-objective; genetic algorithm; architectural design process; case study
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2017_094
id sigradi2017_094
authors Nacimento Firme, Eduardo; Max Lira Veras Xavier de Andrade
year 2017
title Projeto Colaborativo, Realidade Vitual e BIM: Uma experiencia de participação dos clientes nas decisões dos projetos de arquitetura [Collaborative project, Virtual Reality and BIM: An experience of customer participation in the decisions of architectural projects]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.651-657
summary This paper presents an undergraduate work, still under development that discusses and implements a virtual reality based collaboration system to be used during the design stage of the architectural project. Tests are currently being developed to define the form of interaction in an immersive virtual environment. This system will enable the client to be immersed in a virtual environment and be able to change it according to their needs and tastes, effectively participating in the project process.
keywords Collaborative design; Virtual Reality; BIM; Immersive virtual environments, Architecture Design.
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2017_189
id caadria2017_189
authors Reinhardt, Dagmar and Cabrera, Densil
year 2017
title Randomness in Robotically Fabricated Micro-Acoustic Patterns
doi https://doi.org/10.52842/conf.caadria.2017.853
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 853-862
summary Randomness can introduce degrees of variation as part of a highly controlled design process, which can be of particular significance in the context of acoustic performance in architecture. This paper presents research into robotic fabrication of surfaces with acoustic micro-patterns that can change the acoustic response of space. It explores the design affordances for acoustically efficient 1:10 scale model prototypes, from parametric modeling to scale model production to physical evaluation. Acoustic reflective properties of surface patterns are investigated for scattering coefficients, in order to derive statistical data on acoustic properties of these surfaces, and to deduce design rules. The robotic subtractive process particularly invests variations and disturbances to originally coded fabrication sequences that lead to different pattern outcomes. Changes to protocols and workflows change the equations of design through shuffling of multiple criteria: from multiple sequences in a production process to intuitive impacts of the designer on a preset tooling and workpath; from computational design code to acoustic effect.
keywords robotic subtractive manufacturing; micro-acoustic patterns; sound scattering; design thinking
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2017_029
id caadria2017_029
authors Sun, Zheng and Cao, Yong Kang
year 2017
title Applications of Integrated Digital Technologies for Surveying Tibetan Architectural Heritage:Three Years of Experiences
doi https://doi.org/10.52842/conf.caadria.2017.663
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 663-672
summary Absence of reliable and accurate surveying of Tibetan architectural heritage has long been a major constraint for architects, architectural historians and archeologists working in that region. Due to distinctive geographical environment and architectural typology, unique surveying technologies are required in Tibet. In the last three years, integrated digital surveying technologies are applied to architectural heritage in Gyantse, a Tibetan city. The aim of the surveying is to document and analyze local architectural heritage for potential technical intervention such as consolidation, restoration and renovation. Key technical issues ranging from reliability of consumer-level UAV to BIM-based platform are presented in the article. The conclusions are that digital technologies greatly improve architectural heritage surveying in Tibet in terms of accuracy, efficiency and versatility. Future works will be addressed in more robust algorithms for points cloud semantic segmentation, change detection of large-scale architectural heritage based on remotely sensed imagery over time, and data exchange and coordination between BIM and GIS, etc.
keywords Architectural heritage; Digital survey; Tibet; UAV; BIM
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_174
id ecaade2017_174
authors Tonn, Christian
year 2017
title Designing Colour in Virtual Reality - Comparing a Virtual Reality based and a Screen based Colour Design Method
doi https://doi.org/10.52842/conf.ecaade.2017.2.721
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 721-728
summary Designing colours for architecture with digital tools is still a challenging topic. Especially for customers and students the perception of a full-scale coloured interior room is hard to imagine. This paper presents a software prototype and a small user study, which addresses the colour design process with professional digital tools and a virtual reality head mounted device (Oculus Rift DK2). The user can navigate within an imported three-dimensional model freely and change colour, texture and light properties with a real-time updated radiosity visualization. The presented user study compares a screen based working method with the developed virtual reality based design support and interaction method.
keywords Virtual Reality; Colour; Design Support; Real-time; VR-glasses
series eCAADe
email
last changed 2022/06/07 07:58

_id cf2017_563
id cf2017_563
authors Varinlioglu, Guzden; Basarir, Lale; Genca, Ozgur; Vaizoglu, Zeynep
year 2017
title Challenges in Raising Digital Awareness in Architectural Curriculum
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 563.
summary The issue of bringing digital technology into architectural education necessitates a paradigmatic change. Achieving this change within a conventional framework presents a number of challenges. However, challenges are presented by the rapid change of technological tools and the frustration of updating the architectural scholarship, especially for schools with a traditional curriculum. This paper focuses on a case study of an update in the architectural curriculum for a CAD course. An approach to understanding the impact of digital tools and methods on digital awareness and a sustainable development of the students and pedagogy are presented, discussed, and demonstrated. Based on questionnaires, the students’ learning outcomes are evaluated.
keywords Digital Awareness, Architectural Curricula, Learning Outcome
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_085
id ecaade2017_085
authors Agustí-Juan, Isolda, Hollberg, Alexander and Habert, Guillaume
year 2017
title Integration of environmental criteria in early stages of digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2017.2.185
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 185-192
summary The construction sector is responsible for a big share of the global energy, resource demand and greenhouse gas emissions. As such, buildings and their designers are key players for carbon mitigation actions. Current research in digital fabrication is beginning to reveal its potential to improve the sustainability of the construction sector. To evaluate the environmental performance of buildings, life cycle assessment (LCA) is commonly employed. Recent research developments have successfully linked LCA to CAD and BIM tools for a faster evaluation of environmental impacts. However, these are only partially applicable to digital fabrication, because of differences in the design process. In contrast to conventional construction, in digital fabrication the geometry is the consequence of the definition of functional, structural and fabrication parameters during design. Therefore, this paper presents an LCA-based method for design-integrated environmental assessment of digitally fabricated building elements. The method is divided into four levels of detail following the degree of available information during the design process. Finally, the method is applied to the case study "Mesh Mould", a digitally fabricated complex concrete wall that does not require any formwork. The results prove the applicability of the method and highlight the environmental benefits digital fabrication can provide.
keywords Digital fabrication; Parametric LCA; Early design; Sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2017_199
id cf2017_199
authors Mokhtar, Sarah; Leung, Christopher; Chronis, Angelos
year 2017
title Neighbourhood Shading Impacts on Passive Adaptive Façade Collective Behaviour
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 199-210.
summary The past decade witnessed a shift in adaptive facades from energyintensive complex systems to material-based actuated facades. The latter, however, were only developed with limited control in shape memory alloy applications, and more generally designed as independent components. The perception of the component within a system as a self-regulating entity was shown to widen the behavioural response and intelligence of an adaptive system in several projects. On the other hand, its range of impact and integration as a design factor were not targeted at full breadth in the literature. The study’s objective was to investigate the incorporation of neighbourhood shading behaviour of a shape memory alloy-actuated façade component on the entire system. Based on a designed adaptive component, the research identifies the shading impact on the actuators’ incident solar radiation as well as its hourly and seasonal range, and thus encourages a better prediction of collective behaviour.
keywords Solar Morphing Envelopes, Neighbourhood Shading, Collective Behaviour, Adaptive Facades.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_146
id acadia17_146
authors Black, Conor; Forwood, Ed
year 2017
title Game Engine Computation for Serious Engineering: Visualisation and Analysis of Building Facade Movements as a Consequence of Loads on the Primary Structure
doi https://doi.org/10.52842/conf.acadia.2017.146
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 146-153
summary This paper demonstrates the innovative use of game engines as a tool in the analysis and communication of complex structural engineering. It specifically looks at the relationship between a building’s primary structure and its façade. The analysis and visualisations, scripted using the Game Engine Unity3D, focuses on visualising the implications of movements from the primary structure [under various load cases] on the façade. This paper describes the novel process by which Unity3D is utilised to create an applet which imports displacements from structural software and post-processes the data to visualise the complex effect on façade panels according to its support conditions. It demonstrates that visualising facade movements in real-time, as opposed to current, static report-based descriptions, provide access for the comprehension of more complex building systems. This therefore has the possibility to reduce safety factors applied to facade movement joints.
keywords design methods; information processing; game engines; fabrication; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_077
id ecaade2017_077
authors Mekawy, Mohammed and Petzold, Frank
year 2017
title Exhaustive Exploration of Modular Design Options to Inform Decision Making
doi https://doi.org/10.52842/conf.ecaade.2017.2.107
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 107-114
summary Europe is facing an increasing demand for new construction, which is pushing the industry away from traditional construction technology towards prefabrication and Mass-Customization. However, prefabrication-based construction requires a more efficient, better informed decision making process due to the increased difficulty of on-site variations. Furthermore, the lack of means to navigate the whole spectrum of solutions for a given design problem using traditional tools, and the absence of the manufacturer's input in the early phases of the project can present significant challenges for the efficiency of the design and construction process. As a way to face these challenges, this paper presents an approach, realized as an Autodesk Dynamo-for-Revit package called Box Module Generator (BMG), which enables the exhaustive generation of configurations for a given building based on a construction scheme that utilizes Box Prefabricates. The output can be sorted, dissected and explored by users in various ways and the building geometry can be generated automatically in a Building Information Modeling environment. This makes it possible for the projects' stakeholders to browse thousands of potential design alternatives, which would otherwise be very hard to explore manually, or using traditional parametric modelers.
keywords Prefabrication; Box Prefabricates; Design Tools; Design Automation; Building Information Modeling; Dynamo
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2017_046
id sigradi2017_046
authors Yamana, Daniella Naomi; Jady Medeiros, Eduardo Ignacio Lopes, Paulo Eduardo Fonseca de Campos
year 2017
title Calçadas Drenantes: Intervenções físicas com desenvolvimento social [Draining pavements: physical interventions with social development]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.314-321
summary This work presents the development of an applied research related to the installation of rainwater drainage systems in areas of economic and social vulnerability in São Paulo City, Brazil. It is also relevant for us to encourage participatory processes that involve the local community in problem-solving activities, while allowing appropriation of the technology applied. In this case, we are employing light prefabrication based on high performance microconcrete, molded in formwork produced with the aid of digital manufacturing. Our main purpose is to promote urban improvements in precarious settlements along with local economic development, made possible by self-management and community production.
keywords Collaborative urbanism; Urban drainage; Microconcrete; Digital fabrication.
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2017_133
id ecaade2017_133
authors Ashrafi, Negar and Duarte, José Pinto
year 2017
title A shape-grammar for double skin facades - A basis for generating context sensitive facades solution
doi https://doi.org/10.52842/conf.ecaade.2017.2.471
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 471-476
summary Double skin façade (DSF) is considered one of the best envelope systems in terms of energy efficiency. However, designing an energy efficient DSF system depends on different factors, such as climate, DSF shape and how the air flows in that system. This study presents a methodology to assist design decisions regarding the DSFs shapes. For this purpose, shape grammars was used as a generative design system to generate alternative DSF shape designs. Results of this study can be integrated with an energy simulation tools to calculate the energy demand of each design and consequently design the most efficient DSF system for each context.
keywords building envelope design; double skin façade; generative design system; shape grammars
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_101
id ecaade2017_101
authors Ayoub, Mohammed and Wissa, Magdi
year 2017
title Daylight Optimization - A Parametric Study of Urban Façades Design within Hybrid Settlements in Hot-Desert Climate
doi https://doi.org/10.52842/conf.ecaade.2017.2.193
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 193-202
summary Unprecedented growth of hybrid settlements causes deterioration to the indoor environmental quality. Due to their narrow street-networks and fully packed urban fabric, lower floors are subjected to severe overshadow condition, which has adverse effects on the health of the inhabitants. This paper aims to investigate techniques to mitigate the under-lit indoor environment for a group of buildings with variable heights and orientations, with regard to the urban façades parameters. It reflects an intervention in an existing hybrid settlements, within hot-desert climate, to alter façades configurations for daylight optimization, and ultimately recover the lost indoor quality of users in such contexts.
keywords Daylight Optimization; Urban Façade; Simulation; Hybrid Settlements ; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_181
id ecaade2017_181
authors Balaban, Özgün and Tunçer, Bige
year 2017
title Visualizing and Analising Urban Leisure Runs by Using Sports Tracking Data
doi https://doi.org/10.52842/conf.ecaade.2017.1.533
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 533-540
summary Recently there has been a significant growth on the usage of personal fitness applications running on smart phones or fitness devices. These applications record millions of GPS points generated from the paths of runners. This data can be analyzed to comprehend behavior of runners within a specific location. In this study, using data generated from several sources such as Endomondo and Strava and other complementary data such as climate data, population data etc., we aim to find out the factors affecting running behavior in urban settings. For this purpose, visualizations of running activities are plotted with different variables by using BIG-DID, a software tool we developed as part of this study. Additionally, an evaluation of the tools used or can be used for data analysis and visualizations discussed. Finally, a linear regression model is introduced, which will be further developed in later stages of this study.
keywords Big Data; Urban Visualization; Fitness Applications; Leisure Runs
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_610
id acadia17_610
authors Thariyan, Elizabeth; Beorkrem, Christopher; Ellinger, Jefferson
year 2017
title Buildable Performance Envelopes: Optimizing Sustainable Design in a Pre-Design Phase
doi https://doi.org/10.52842/conf.acadia.2017.610
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 610- 619
summary The growing consciousness regarding ecologically conscious architecture mandates a deeper understanding of the strategies that may be adopted by designers towards achieving this goal. With the advent of building information modelling (BIM) and the associated paradigm shift in the design process, it has become increasingly possible to make informed decisions earlier on in the design process. Despite this advancement, the architectural realm continues to lack computational resources that are capable of providing formal guidelines, through a generative process, that serve as a starting point for sustainable design. Towards overcoming this limitation, this paper will describe a computational tool that generates buildable performance envelopes in response to aspects of a site that are influential in designing sustainably: climate and context. These envelopes are created in a generative manner through the utilization of a voxel (three-dimensional pixel) matrix, which continually updates itself based on formal elements created by the user. Facilitating the process of making ecologically conscious design decisions at the earliest stages of design, which is the primary goal of this tool, more substantially increases the achieved energy optimization. Illustrative building designs presented in the paper resulting from the testing of this tool in contrasting climate zones, such as Miami, Florida (ASHRAE Zone 01) and Aspen, Colorado (ASHRAE Zone 07), confirms the assertion that the performance envelopes generated with this tool serve only as a guideline for optimized sustainable design, and not as the final form of the building itself.
keywords design methods; information processing; BIM; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_642180 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002