CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 577

_id acadia24_v2_61
id acadia24_v2_61
authors Bhusry, Nandan; Cupkova, Dana; Sawyer, Azadeh
year 2024
title Shaping Passive Dehumidification for Hot and Humid Climates
source ACADIA 2024: Designing Change [Volume 2: Proceedings of the 44th Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-8-9]. Calgary. 11-16 November 2024. edited by Alicia Nahmad-Vazquez, Jason Johnson, Joshua Taron, Jinmo Rhee, Daniel Hapton. pp. 275-288
summary This research explores adapting architectural material systems as passive dehumidifiers using hygroscopic coatings and material geometry. The study validates increased passive dehumidification through an experimental hybrid lattice system. Human comfort is affected by temperature, humidity, and metabolic heat. In hot and humid climates, elevated tempera¬tures and humidity pose health risks like hyperthermia and mortality (Mora et al. 2017). Historically, vernacular architecture in tropical regions used hygroscopic materials like mud and thatch (Little and Morton 2001; Monzur 2018), to enhance passive cooling through natural ventilation. In contrast, modern construction often relies on mechanical air condi¬tioning, overlooking passive cooling strategies (Korachy 2020). Inspired by vernacular approaches to the built environment, this experiment adapts Isothermal Membrane-Assisted dehumidification (IMAD) technology (Qu et al. 2018) used in mechanical cooling systems to passively extract moisture through hybridization of geometry and matter. While membrane selectivity is adapted to many applications (Woods 2014), its integration into architectural design remains underexplored. Drawing inspiration from Indian Jaali systems, a lattice scaf¬fold is tested to study lattice morphology, and hygroscopic material properties for effective dehumidification at a building scale. Using computational simulation and physical testing, this proposal integrates IMAD into material geometry, focusing on increasing air velocity and passive dehumidification effectiveness (Figure 1).Ultimately, this research aims to rede¬fine architectural design by integrating innovative, passive dehumidification techniques, thus promoting survivability, enhancing human comfort and reducing reliance on mechan¬ical cooling in extreme climates.
series ACADIA
type paper
email
last changed 2025/07/21 11:41

_id acadia17_138
id acadia17_138
authors Berry, Jaclyn; Park, Kat
year 2017
title A Passive System for Quantifying Indoor Space Utilization
doi https://doi.org/10.52842/conf.acadia.2017.138
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 138-145
summary This paper presents the development of a prototype for a new sensing device for anonymously evaluating space utilization, which includes usage factors such as occupancy levels, congregation and circulation patterns. This work builds on existing methods and technology for measuring building performance, human comfort and occupant experience in post-occupancy evaluations as well as pre-design strategic planning. The ability to collect data related to utilization and occupant experience has increased significantly due to the greater accessibility of sensor systems in recent years. As a result, designers are exploring new methods to empirically verify spatial properties that have traditionally been considered more qualitative in nature. With this premise, this study challenges current strategies that rely heavily on manual data collection and survey reports. The proposed sensing device is designed to supplement the traditional manual method with a new layer of automated, unbiased data that is capable of capturing environmental and social qualities of a given space. In a controlled experiment, the authors found that the data collected from the sensing device can be extrapolated to show how layout, spatial interventions or other design factors affect circulation, congregation, productivity, and occupancy in an office setting. In the future, this sensing device could provide designers with real-time feedback about how their designs influence occupants’ experiences, and thus allow the designers to base what are currently intuition-based decisions on reliable data and evidence.
keywords design methods; information processing; smart buildings; IoT
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_630
id acadia17_630
authors Vasanthakumar, Saeran; Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2017
title Bibil: A Performance-Based Framework to Determine Built Form Guidelines
doi https://doi.org/10.52842/conf.acadia.2017.630
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 630- 639
summary City built-form guidelines act as durable constraints on building design decisions. Such guidelines directly impact energy, comfort and other performance conditions. Existing urban design and planning methods only consider a narrow range of potential design scenarios, with rudimentary performance criteria, resulting in suboptimal urban designs. Bibil is a software plugin for the Rhinoceros3D/Grasshopper3D CAD modeler that addresses this gap through the synthesis of design space exploration methods to help design teams optimize guidelines for environmental and energy performance criteria over the life cycle of the city. Bibil consists of three generative and data management modules. The first module simulates development scenarios from street and block information through time, the second designs appropriate architectural typology, and the third abstracts the typologies into a lightweight analysis model for detailed thermal load and energy simulation. State-of-the-art performance simulation is done via the Ladybug Analysis Tools Grasshopper3D plugin, and further bespoke analysis to explore the resulting design space is achieved with custom Python scripts.This paper first introduces relevant background for automated exploration of urban design guidelines. Then the paper surveys the state-of-the-art in design and performance simulation tools in the urban domain. Next the paper describes the beta version of the tool’s three modules and its application in a built form study to assess urban canyon performance in a major North American city. Bibil enables the exploration of a broader range of potential design scenarios, for a broader range of performance criteria, over a longer period of time.
keywords design methods; information processing; simulation & optimization; form finding; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id caadria2017_018
id caadria2017_018
authors Fernando, Shayani, Reinhardt, Dagmar and Weir, Simon
year 2017
title Waterjet and Wire-cutting Workflows in Stereotomic Practice - Material Cutting of Wave Jointed Blocks
doi https://doi.org/10.52842/conf.caadria.2017.787
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 787-797
summary In the context of stereotomic practice, advanced fabrication with waterjet and wire-cutting of interlocking wave geometry has opened up new possibilities for crafting stone modules with precision and efficiency. This paper discusses the utilization of machined cutting techniques, the processes and workflows of fabricating joint systems for arched and vaulted surface geometries. It presents a comparative study with multiple criteria; such as geometry, method, material, machine and workflow. Furthermore, this paper presents research into the comparison between abrasive waterjet cutting and wire cutting of modules in stone and foam.
keywords Stereotomy; Wire Cutting; WaterJet; Wave Blocks; Workflow
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_151
id ecaade2017_151
authors Moloney, Jules, Twose, Simon, Jenner, Ross, Globa, Anastasia and Wang, Rui
year 2017
title Lines from the Past - Non-photorealistic immersive virtual environments for the historical interpretation of unbuilt architectural drawings
doi https://doi.org/10.52842/conf.ecaade.2017.2.711
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-720
summary The trajectory of virtual reality for architecture is towards photo-realism. While this may be effective for some contexts, we propose that abstraction is more appropriate for the purposes of a historian interpreting drawings of unbuilt works of architecture. The case study we are using to explore this proposition is the Palazzo Littorio competition set in 1934 Rome. We present two prototype immersive virtual reality (iVR) applications developed in Unity for Oculus Rift: the first uses an etching aesthetic to produce a quasi-realistic site context and an interface that enables the comparative evaluation of competition entries from key viewing positions; the second application takes an even more abstract approach, where the aim is to immerse the historian within a 3D drawing, along with other historical material (drawings, photos, paintings, narrations of texts) and uses spatialized sound to evoke the ambience of the period.
keywords Virtual Reality; Non-Photorealism; Architectural History
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2017_079
id ecaade2017_079
authors Qabshoqa, Mohammad, Kocaturk, Tuba and Kiviniemi, Arto
year 2017
title A value-driven perspective to understand Data-driven futures in Architecture
doi https://doi.org/10.52842/conf.ecaade.2017.2.407
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 407-416
summary This paper reports on an investigation of the potentials of data utilisation in Architecture from a value generation and business creation points of view, based on an ongoing PhD research by the first author. It is of crucial importance to, first, identify what data actually signifies for Architecture, and secondly to explore how the value obtained through data-driven approaches in other industries could potentially be transferred and applied in our professional context. These objectives have been achieved through a qualitative comparative analysis of various cases. Additionally, the paper discusses the multiplicity of factors which contribute to different interpretations and utilisation of data with reference to various value systems embedded into our profession (e.g. design as ideology, design as profession, design as service). A comparative analysis of the existing data utilisation methods in connection with various value systems provide crucial insights in order to answer the following questions: How can data assess values in architectural design/practice? How can data utilisation give way to the emergence of new values for the profession?
keywords Big Data in Architecture; Data-Driven Architecture Design; Data in Architecture Design; Computational Data Design; Digital Value in Architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_62
id acadia17_62
authors Al-Assaf, Nancy S.; Clayton, Mark J.
year 2017
title Representing the Aesthetics of Richard Meier’s Houses Using Building Information Modeling
doi https://doi.org/10.52842/conf.acadia.2017.062
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 62-71
summary Beyond its widespread use for representing technical aspects and matters of building and construction science, Building information modeling (BIM) can be used to represent architectural relationships and rules drawn from aesthetic theory. This research suggests that BIM provides not only vocabulary but also syntactical tools that can be used to capture an architectural language. In a case study using Richard Meier’s language for single-family detached houses, a BIM template has been devised to represent the aesthetic concepts and relations therein. The template employs parameterized conceptual mass objects, syntactical rules, and a library of architectonic elements, such as walls, roofs, columns, windows, doors, and railings. It constrains any design produced using the template to a grammatically consistent expression or style. The template has been used as the starting point for modeling the Smith House, the Douglas House, and others created by the authors, demonstrating that the aesthetic template is general to many variations. Designing with the template to produce a unique but conforming design further illustrates the generality and expressiveness of the language. Having made the formal language explicit, in terms of syntactical rules and vocabulary, it becomes easier to vary the formal grammar and concrete vocabulary to produce variant languages and styles. Accordingly, this approach is not limited to a specific style, such as Richard Meier's. Future research can be conducted to demonstrate how designing with BIM can support stylistic change. Adoption of this approach in practice could improve the consistency of architectural designs and their coherence to defined styles, potentially increasing the general level of aesthetic expression in our built environment.
keywords design methods; information processing; BIM; education
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_277
id ecaade2017_277
authors Borhani, Alireza and Kalantar, Negar
year 2017
title APART but TOGETHER - The Interplay of Geometric Relationships in Aggregated Interlocking Systems
doi https://doi.org/10.52842/conf.ecaade.2017.1.639
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 639-648
summary In this research, the authors discuss multiple design process criteria, fabrication methods, and assembly workflows for covering spaces using discrete pieces of material shorter than the space's span, otherwise known as topologically interlocking structures. To expand this line of research, the study challenges the interplay of geometric relationships in the assembly of unreinforced and mortar-less structures that work purely under compressive forces. This work opens with a review of studies concerning topological interlocking, a unique type of material and structural system. Then, through a description of two design projects - an interlocking footbridge and a vaulted structure - the authors demonstrate how they encouraged students to engage in a systematic exploration of the generative relationships among surface geometry, the configuration and formal variations of its subdividing cells, and the stability of the final interlocking assembly. In this fashion, the authors argue that there is hope for carrying the design criteria of topological interlocking systems into the production of precast concrete structures.
keywords Topological Interlocking Assembly, Digital Stereotomy, Compression-Only Vaulted Structures, Surface Tessellation, Digital Materiality.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_052
id sigradi2017_052
authors Branco, Bruna; Robson Canuto, Aristóteles Cantalice
year 2017
title Fabricação Digital Aplicada à Habitação de Caráter Emergencial: Um estudo sobre a adaptação de WikiHouses ao contexto ambiental brasileiro [Digital Fabrication Applied to Temporary Houses for Post-disaster and Social Emergency: A study on the adaptation of WikiHouses to the Brazilian tropics]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.358-366
summary Digital fabrication has transformed the way buildings are constructed by applying methods such as friction-fit connection. This technique has been propagated by WikiHouse which aims to develop open building technologies to different environmental contexts. However, the indiscriminate use of the model may result in inefficiency of housing performance. This work, therefore, investigates solutions for adapting WikiHouses to the tropics, according to principles proposed by Armando de Holanda in ‘A Guide to Build in Northeast Brazil’. Nevertheless, difficulties related to certain adaptations were observed such as connections compatibility and design of large open spaces, especially because these systems depend on a maximum size of parts.
keywords Digital fabrication; Temporary houses; Post-traumatic urbanism; Friction-fit Connection, WikHouse.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2017_155
id caadria2017_155
authors Cichocka, Judyta Maria, Browne, Will Neil and Rodriguez, Edgar
year 2017
title Optimization in the Architectural Practice - An International Survey
doi https://doi.org/10.52842/conf.caadria.2017.387
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 387-396
summary For several years great effort has been devoted to the study of Architectural Design Optimization (ADO). However, although in the recent years ADO has attracted much attention from academia, optimization methods and tools have had a limited influence on the architectural profession. The aim of the study is to reveal users' expectations from the optimization tools and define limitations preventing wide-spread adaptation of the optimization solvers in the architectural practice. The paper presents the results of the survey "Optimization in the architectural practice" conducted between December 2015 and February 2016 on 165 architectural trainees and practising architects from 34 countries. The results show that there is a need for an interactive multi-objective optimization tool, as 78% respondents declared that a multi-objective optimization is more necessary in their practice than a single objective one and 91% of them acknowledged the need for choice of promising solutions during optimization process. Finally, it has been found that daylight, structure and geometry are three top factors which architects are interested in optimizing.
keywords Architectural Design Optimization; Optimizaiton Techniques; Generic Solvers; Multi-criteria Decision Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2017_128
id cf2017_128
authors Dietrich, Sebastian; Schneider, Sven; Demin, Dimitry
year 2017
title RhinoRstab: Introducing and Testing a New Structural Analysis Plugin for Grasshopper3D
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 128-136.
summary This paper presents a new open-source structural analysis plugin for Grasshopper – RhinoRstab. The plugin bridges data between the worldwide established software: Rhinoceros3d and Dlubal RSTAB. The basic idea behind the approach is to create an interactive workflow between the architectural design on the one hand and a structural analysis tool on the other hand. In contrast to RhinoRstab, other analysis tools for Grasshopper predict the structural behaviour independent of its structural capacity. Thus, additional standalone software is necessary to verify the analysis of these plugins subsequently. To test the validity of this new tool, it is compared to a similar application, namely Karamba (a widely used structural analysis plugin for Rhinoceros/Grasshopper). Both tools are tested in different scenarios. The study shows that for some elements in a structural system and some calculation methods RhinoRstab and Karamba results differ strongly. However, regarding the runtime, Karamba operates faster than RhinoRstab.
keywords Automation, Structural Analysis, Structural Design, Optimization
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_044
id ecaade2017_044
authors Fernando, Shayani, Reinhardt, Dagmar and Weir, Simon
year 2017
title Simulating Self Supporting Structures - A Comparison study of Interlocking Wave Jointed Geometry using Finite Element and Physical Modelling Methods
doi https://doi.org/10.52842/conf.ecaade.2017.2.177
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 177-184
summary Self-supporting modular block systems of stone or masonry architecture are amongst ancient building techniques that survived unchanged for centuries. The control over geometry and structural performance of arches, domes and vaults continues to be exemplary and structural integrity is analysed through analogue and virtual simulation methods. With the advancement of computational tools and software development, finite and discrete element modeling have become efficient practices for analysing aspects for economy, tolerances and safety of stone masonry structures. This paper compares methods of structural simulation and analysis of an arch based on an interlocking wave joint assembly. As an extension of standard planar brick or stone modules, two specific geometry variations of catenary and sinusoidal curvature are investigated and simulated in a comparison of physical compression tests and finite element analysis methods. This is in order to test the stress performance and resilience provided by three-dimensional joints respectively through their capacity to resist vertical compression, as well as torsion and shear forces. The research reports on the threshold for maximum sinusoidal curvature evidenced by structural failure in physical modelling methods and finite element analysis.
keywords Mortar-less; Interlocking; Structures; Finite Element Modelling; Models
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_008
id ecaade2017_008
authors Fukuda, Tomohiro, Inoue, Kazuya and Yabuki, Nobuyoshi
year 2017
title PhotoAR+DR2016 - Integrating Automatic Estimation of Green View Index and Augmented and Diminished Reality for Architectural Design Simulation
doi https://doi.org/10.52842/conf.ecaade.2017.2.495
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 495-502
summary Urban vegetation has been used to tackle architectural and urban problems by reducing urban heat islands and improving the quality of urban landscapes and biodiversity. The green view index provides end users with a metric to intuitively understand the vegetation scenarios. This study integrates a green view index estimation method and augmented reality (AR) and diminished reality (DR) scenes of future architectural and urban design simulations. We developed the AR/DR system "PhotoAR+DR2016 (photogrammetry-based augmented and diminished reality)" that simultaneously measures the green view index and simulates building, urban, and planting designs with addition, demolition, and removal of the objects such as structures. The developed system enables real-time measurement of the green view index by appropriately reducing the image size and extracting the green area. Using the developed prototype system, the on-site verification can be conducted; in addition, the processing speed and the accuracy and inaccuracy rates can be measured, and the green view index can be sufficiently measured in real time.
keywords Green View Index; Landscape assessment; Design support system; Diminished Reality; Augmented Reality; Image analysis
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_037
id ecaade2017_037
authors Hassan Khalil, Mohamed
year 2017
title Learning by Merging 3D Modeling for CAAD with the Interactive Applications - Bearing walls, Vaults, Domes as Case study
doi https://doi.org/10.52842/conf.ecaade.2017.1.353
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 353-362
summary The development and the innovation of tools, techniques and digital applications represent a challenge for those who are in charge of architectural education to keep up with this development. This is because these techniques provide potentials that are not available in the traditional method of teaching. This raises an important question: can these tools and techniques help to achieve the targeted outcomes of education? This research paper discusses how to integrate both digital 3D models, of CAAD, and interactive applications for the development of architectural education curriculum. To test this, a case study has been conducted on the subject of building construction, for the second year at the faculty of engineering, specifically, the bearing walls construction system. In addition, this study has been divided into three parts. Through the first part, the scientific content of the curriculum, which tackles the bearing walls, has been prepared. The second part shows how to convert the scientific content into an interactive content in which the students learn through the experiment and the simulation of the traditional construction methods as the students a acquire construction skills and the ability to imagine different structural complexities. The third part includes the creation of both the application and the software containing the interactive curriculum. Workshop for the students has been held as a case study to test the effectiveness of this development and to recognize the pros and cons. The results confirmed the importance of integrating this applications into architectural education.
keywords CAAD; 3D modeling ; Building Construction; Interactive applications; Bearing walls systems
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia17_284
id acadia17_284
authors Hu, Zhengrong; Park, Ju Hong
year 2017
title HalO [Indoor Positioning Mobile Platform]: A Data-Driven, Indoor-Positioning System With Bluetooth Low Energy Technology To Datafy Indoor Circulation And Classify Social Gathering Patterns For Assisting Post Occupancy Evaluation
doi https://doi.org/10.52842/conf.acadia.2017.284
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 284-291
summary Post-Occupancy Evaluation (POE) as an integrated field between architecture and sociology has created practical guidelines for evaluating indoor human behavior within a built environment. This research builds on recent attempts to integrate datafication and machine learning into POE practices that may one day assist Building Information Modeling (BIM) and multi-agent modeling. This research is based on two premises: 1) that the proliferation of Bluetooth Low Energy (BLE) technology allows us to collect a building user’s data cost-effectively and 2) that the growing application of machine learning algorithms allows us to process, analyze and synthesize data efficiently. This study illustrates that the mobile platform HalO can serve as a generic tool for datafication and automation of data analysis of the movement of a building user. In this research, the iOS mobile application HalO, combined with BLE beacons enable building providers (architects, developers, engineers and facility managers etc.) to collect the user’s indoor location data. Triangulation was used to pinpoint the user’s indoor positions, and k-means clustering was applied to classify users into different gathering groups. Through four research procedures—Design Intention Analysis, Data Collection, Data Storage and Data Analysis—the visualized and classified data helps building providers to better evaluate building performance, optimize building operations and improve the accuracy of simulations.
keywords design methods; information processing; data mining; IoT; AI; machine learning
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2017_113
id caadria2017_113
authors Huang, Weixin, Lin, Yuming and Wu, Mingbo
year 2017
title Spatial-Temporal Behavior Analysis Using Big Data Acquired by Wi-Fi Indoor Positioning System
doi https://doi.org/10.52842/conf.caadria.2017.745
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 745-754
summary Understanding of people's spatial behavior is fundamental to architectural and urban design. However, traditional investigation methods applied in environmental behavior studies is highly limited regarding the amount of samples and regions it covers, which is not sufficient for the exploration of complex dynamic human behaviors and social activities in architectural space. Only recently the developments in indoor positioning system (IPS) and big data analysis technique have made it possible to conduct a full-time, full-coverage study on human environmental behavior. Among the variety IPS systems, the Wi-Fi IPS system is increasingly widely used because it is easy to be applied with acceptable cost. In this paper, we analyzed a 60-days anonymized data set, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. The analysis revealed interesting patterns on people's behavior besides temporal spatial distribution, ranging from the cyclical fluctuation in human flow to behavioral patterns of sub-regions, some of which are not easy to be identified and interpreted by the traditional field observation. Through this case study, behavioral data from IPS system has exhibited great potential in bringing about profound changes in the study of environmental behavior.
keywords environmental behavior study; Wi-Fi; indoor positioning system; big data; spatial temporal behavior; ski resort
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2017_021
id caadria2017_021
authors Hwang, Ji-Hyoun and Lee, Hyunsoo
year 2017
title 3D Visual Simulation and Numerical Measurement of Privacy in Traditional Korean Palace
doi https://doi.org/10.52842/conf.caadria.2017.355
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 355-363
summary Traditional Korean architecture provides privacy through a proper balance of openness and enclosure through courtyard gardens. However, it is difficult to analyse privacy quantitatively in a three-dimensional space. The analysis of visual privacy is a significant issue in resolving conflicts and enhancing comfort. This paper develops a computational algorithm for simulating and measuring privacy on the concept of prospect and refuge: a design strategy for psychological wellbeing. In order to visualize privacy, the prospect area ratio (PAR) and refuge area ratio (RAR) are used in 3D visual simulations. PAR and RAR calculate the area ratio of the hiding space or the visible space in the images collected from the 3D model. In addition, parametric algorithms are proposed to calculate PAR/RAR automatically. Finally, this research demonstrates a case study of Gyeongbokgung, one of the five palace buildings in Korea, to show methods and processes of the quantitative analysis of visual privacy. The outcome of this paper contributes to quantitative confirmation of spatial characteristics that clearly distinguish between public space and private space of Gyeongbokgung. The proposed method also shows great potentials to quickly obtain the numeric value of privacy.
keywords 3D simulation; numerical measurement; traditional Korean palace; privacy
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_159158 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002