CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 571

_id acadia17_670
id acadia17_670
authors Zwierzycki, Mateusz; Vestartas, Petras; Heinrich, Mary Katherine; Ayres, Phil
year 2017
title High Resolution Representation and Simulation of Braiding Patterns
doi https://doi.org/10.52842/conf.acadia.2017.670
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 670- 679
summary From the hand-crafted to the highly engineered, braided structures have demonstrated broad versatility across scales, materials, and performance types, leading to their use in a plethora of application domains. Despite this prevalence, braided structures have seen little exploration within a contemporary architectural context. Within the flora robotica project, complex braided structures are a core element of the architectural vision, driving a need for generalized braid design modeling tools that can support fabrication. Due to limited availability of existing suitable tools, this interest motivates the development of a digital toolset for design exploration. In this paper, we present our underlying methods of braid topology representation and physics-based simulation for hollow tubular braids. We contextualize our approach in the literature where existing methods for this class of problem are not directly suited to our application, but offer important foundations. Generally, the tile generation method we employ is an already known approach, but we meaningfully extend it to increase the flexibility and scope of topologies able to be modeled. Our methods support design workflows with both predetermined target geometries and generative, adaptive inputs. This provides a high degree of design agency by supporting real-time exploration and modification of topologies. We address some common physical simulation problems, mainly the overshooting problem and collision detection optimization, for which we develop dynamic simulation constraints. This enables unrolling into realistically straight strips, our key fabrication-oriented contribution. We conclude by outlining further work, specifically the design and realization of physical braids, fabricated robotically or by hand.
keywords design methods; information processing; fabrication; digital craft; manual craft; representation
series ACADIA
email
last changed 2022/06/07 07:57

_id acadia17_110
id acadia17_110
authors Arnowitz, Ethan; Morse, Christopher; Greenberg, Donald P.
year 2017
title vSpline: Physical Design and the Perception of Scale in Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2017.110
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 110-117
summary Virtual reality provides a heightened sense of immersion and spatial awareness that provides a unique opportunity for designers to perceive and evaluate scale and space. At the same time, traditional sketches and small-size physical models provide tactile feedback that allow designers to create, comprehend, and explore complex geometric relationships. Through the development of vSpline, a modeling application for virtual reality, we explore the potential for design within a virtual spatial environment to blur the boundaries between digital and physical stages of design, and seek to combine the best of both virtual and analog worlds. By using spline-based closed meshes created directly in three-dimensional space, our software provides the capabilities to design, modify, and save the information in the virtual world and seamlessly convert the data to evaluate the printing of 3D physical models. We identify and discuss important questions that arise regarding relationships of perception of scale, digital-to-physical domains, and new methods of input and manipulation within a 3D immersive space.
keywords design methods; information processing; hci; vr; ar; mixed reality; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_128
id acadia17_128
authors Bacharidou, Maroula
year 2017
title Touch, See, Make: Employing Active Touch in Computational Making
doi https://doi.org/10.52842/conf.acadia.2017.128
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 128-137
summary In architectural education and practice, we don’t come in physical contact with what we make until the later stages of the design process. This vision-oriented approach to design is something deeply rooted in architectural practice: from Alberti’s window to the screens of our computers, design has traditionally been more of a visual and less of a hands-on process. The vision of the presented study is that if we want to understand the way we make in order to improve tools for computational design and making, we need to understand how our ability to make things is enhanced by both our visual and tactile mechanisms. Bringing the notion of active touch from psychology into the design studio, I design and execute a series of experiments investigating how seeing, touching, or seeing and touching exhibit different sensory competencies, and how these competencies are expressed through the process of making. The subjects of the experiment are asked to tactilely, visually, or tactilely and visually observe a three-dimensional object, create descriptions of its composition, and to remake it based on their experience of it using plastic materials. After the execution of the experiment, I analyze twenty-one reproductions of the original object; I point to ways in which touch can detect scale and proportions more accurately than vision, while vision can detect spatial components more efficiently than touch; I then propose ways in which this series of experiments can lead to the creation of new design and making tools.
keywords education society & culture; computational / artistic culture;s hybrid practices; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
doi https://doi.org/10.52842/conf.acadia.2017.164
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_125
id caadria2017_125
authors Huang, Jian Ming
year 2017
title Integrating Computational Design and Traditional Crafts - A Reinvention of Bamboo Structures
doi https://doi.org/10.52842/conf.caadria.2017.437
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 437-444
summary Abstract: This paper searches for an alternative design method of integrating traditional material craft and computational design. It begins by analyzing Chinese philosophical view of nature, and proposes a natural design built method. The paper demonstrates the idea with two bamboo structure projects. In China, bamboo is closely linked to culture values and traditional craftsmanship. The projects research on the formation logic of bamboo system, and employs computational design method to activate the system formation. The projects strive to investigate computational design with unique eastern characteristics, to find out how it can help to reinvent its traditional values, and to search for a unification of formation logic and material sensibility.
keywords Craftsmanship; materiality; form finding; bamboo
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_274
id ecaade2017_274
authors Lanham, Thomas, Shaifa, Irvin, Poustinchi, Ebrahim and Luhan, Gregory
year 2017
title Craft and Digital Consequences - Micro-Hybrid Explorations at (Full) Scale
doi https://doi.org/10.52842/conf.ecaade.2017.2.327
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 327-336
summary This paper presents a comprehensive project-based research investigation that uses both drawing and modeling to challenge conventional design space. Situated at the University of Kentucky-College of Design Applied Computation Center (CoDACC) in Lexington, KY, this independent undergraduate research project reveals an immersive framework that develops, evaluates, and assesses both graphic and three-dimensional information at full scale. This research provides a framework that seamlessly negotiates analog and digital means of communication and prototyping. This paper outlines the micro-hybrid design process to frame topics germane to today's increasingly complex built environment. The paper also includes the micro-hybrid decision-making matrix and discusses the evaluation of the produced artifacts. The research demonstrates how the micro-hybrid process can reveal both the craft and consequences related to design experimentation and construction. Further, the micro-hybrid process has been shown to deepen a student's understanding of the composition of materials and a student's awareness of forces and structural loads, which in turn has produced a deeper appreciation for the principles of structures and an improved mastery of manufacturing jointing details.
keywords Digital; Pedagogy; Fabrication; Experimentation; Simulation
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2023_362
id caadria2023_362
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldabous, Rahaf, Aldaboos, Sarah and Lopez Rodriguez, Alvaro
year 2023
title Fabrication of Complex Clay Structures Through an Augmented Reality Assisted Platform
doi https://doi.org/10.52842/conf.caadria.2023.1.413
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 413–422
summary The relationship between clay manufacturing and architectural design has a long trajectory that has been explored since the early 2000s. From a 3D printing or assembly perspective, using clay in combination with automated processes in architecture to achieve computational design solutions is well established. (Yuan, Leach & Menges, 2018). Craft-based clay art, however, still lacks effective computational design integration. With the improvement of Augmented Reality (AR) technologies (Driscoll et al., 2017) and the appearance of digital platforms, new opportunities to integrate clay manufacturing and computational design have emerged. The concept of digitally transferring crafting skills, using holographic guidance and machine learning, could make clay crafting accessible to more workers while creating the potential to share and exchange digital designs via an open-source manufacturing platform. In this context, this research project explores the potential of integrating computational design and clay crafting using AR. Moreover, it introduces a platform that enables AR guidance and the digital transfer of fabrication skills, allowing even amateur users with no prior making experience to produce complex clay components.
keywords Computer vision, Distributed manufacturing, Augmented craftsmanship, Augmented reality, Real-time modification, Hololens
series CAADRIA
email
last changed 2023/06/15 23:14

_id cf2017_001
id cf2017_001
authors Muslimin, Rizal
year 2017
title Weaving, Folding and the Tension Between Them: A Discourse on a Structural Ideation Method
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 1-21.
summary This paper presents a computational ideation method, aiming to generate different structural configurations using mechanical embedding and visual calculation. A set of schema to register mechanical description and the shape-relationship is provided. Our results point to a promising avenue in terms of how visual calculation and mechanical embedding work in tandem to extend the language of structural design and advance the future of interdisciplinary craft.
keywords Structure, Ideation, Craft, Shape grammar, Tensegrity
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_022
id cf2017_022
authors Noel, Vernelle A. A.
year 2017
title From Costuming and Dancing Sculptures to Architecture: The Corporeal and Computational in Design and Fabrication of Lightweight Mobile Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 22-41.
summary This paper describes a new approach to designing and fabricating costuming and dancing sculptures and the potential application of this system at the architectural scale. I present a novel design system based on the movement, form, and spatial relation of characters and dancing sculptures in the Trinidad Carnival. I also present a system that produces lightweight mobile structures from 3D printed connections, lightweight rods, and textile. Through a detailed case study, a new dancing sculpture is designed, and a full-scale lightweight mobile structure at the architectural scale is fabricated. Fabrication of the lightweight structure is achieved using Digital Crafting and Crafting Fabrication approaches to wire-bending, which includes the early development of a digital fabrication program for rod elements. This work has potential implications for costuming and dancing sculptures; architecture; computational design; and craft practices.
keywords Lightweight Architectural Structures, Trinidad Carnival, Corporeal, Dancing Sculptures, Fabrication
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_456
id acadia17_456
authors Page, Mitchell
year 2017
title A Robotic Fabrication Methodology for Dovetail and Finger Jointing: An Accessible & Bespoke Digital Fabrication Process for Robotically-Milled Dovetail & Finger Joints
doi https://doi.org/10.52842/conf.acadia.2017.456
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 456- 463
summary Since the advent of industrialized processes in modern construction industries, the development of and relationship between computer-aided tools of design and computer-controlled tools of fabrication has steadily yielded new and innovative construction methodologies. Whilst industry has adopted many of these innovations for use by highly efficient machines and flexible processes, their operation is often highly dependent on industrial scales of production, and thus often inaccessible for small-scale, bespoke and affordable application. The prototype integrated joint milling methodology, case study and open-source software plugin ‘Dove’ presented in this paper, explores the efficacy of algorithmic processes in dynamically generating complex tooling paths and machine code for fabrication of bespoke dovetail and finger joints on a 6-axis industrial robot. The versatility, speed and precision of 6-axis robotic milling, allows us to liberate the efficiency, integrity and aesthetic of the dovetail and finger joint types from traditional application, and apply them to new architectures involving mass-customisation, complex form, and diverse materialities. In the development of full-immersion milling toolpaths and back-face filleting techniques that drastically reduce cutting times, tool path complexity and material waste, this study seeks to build upon past and current research by proposing a comparatively simple, efficient and more intuitive approach to robotically-fabricated integrated jointing for application at a variety of scales.
keywords material and construction; fabrication; construction/robotics; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia17_502
id acadia17_502
authors Rosenwasser, David; Mantell, Sonya; Sabin, Jenny
year 2017
title Clay Non-Wovens: Robotic Fabrication and Digital Ceramics
doi https://doi.org/10.52842/conf.acadia.2017.502
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 502- 511
summary Clay Non-Wovens develops a new approach for robotic fabrication, applying traditional craft methods and materials to a fundamentally technical and precise fabrication methodology. This paper includes new explorations in robotic fabrication, additive manufacturing, complex patterning, and techniques bound in the arts and crafts. Clay Non-Wovens seeks to develop a system of porous cladding panels that negotiate circumstances of natural daylighting through parameters dealing with textile (woven and non-woven) patterning and line typologies. While additive manufacturing has been built predominantly on the basis of extrusion, technological developments in the field of 3D printing seldom acknowledge the bead or line of such extrusions as more than a nuisance. Blurring of recognizable layers is often seen as progress, but it does away with visible traces of a fabrication process. Historically, however, construction methods in architecture and the building industry have celebrated traces of making ranging from stone cutting to log construction. With growing interest in digital craft within the fields of architecture and design, we seek to reconcile our relationship with the extruded bead and reinterpret it as a fiber and three-dimensional drawing tool. The traditional clay coil is to be reconsidered as a structural fiber rather than a tool for solid construction. Building upon this body of robotically fabricated clay structures required the development of three distinct but connected techniques: 1. construction of a simple end effector for extrusion; 2. development of a clay body and; 3. using computational design tools to develop formwork and toolpath geometries.
keywords design methods; information processing; fabrication; digital craft; manual craft; prototyping
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_039
id ecaade2017_039
authors Weissenböck, Renate
year 2017
title ROBOTRACK - Linking manual and robotic design processes by motion-tracking
doi https://doi.org/10.52842/conf.ecaade.2017.1.651
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 651-660
summary This study investigates design opportunities fostered by fabrication processes, ex-ploring manual and robotic forming. It links handcraft and digital fabrication techniques by implementing a motion capture system. It suggests physical prototyping as a novel form of design research, operating in the dynamic field between human capabilities, machine skills, and material behavior. This paper presents a series of experimental case studies created in a seminar taught by the author at Graz University of Technology. In this course, students con-duct tactile experiments, forming panels by hand and by robot, guided by the material behav-ior and reaction. Thereby, they explore the creation of architectural form in a dynamic inter-play between human, machine and material. Movement and speed of hand forming proce-dures are recorded into digital data, and then converted into machine code, driving a 6-axis industrial robotic arm. By using the same set-up for manual and robotic forming, both pro-cesses are relatable.
keywords design by making; digital fabrication; robotic fabrication; thermoforming; material behavior; motion tracking; craft; design education; design research; intuition; human machine interaction
series eCAADe
type normal paper
email
last changed 2022/06/07 07:58

_id cf2017_458
id cf2017_458
authors Çapunaman, Özgüç Bertu?; Bingöl, Cemal Koray; Gürsoy, Benay
year 2017
title Computing Stitches and Crocheting Geometry
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 458.
summary This paper presents a study that explores the computability of the craft of crochet. The study involves two consecutive stages: an analytical and systematic approach to crocheting three-dimensional objects to discover the underlying computational aspects, and a formal representation of the deducted computational logic in the form of a computer algorithm. The aim is to explore the computability of hands-on making processes where computation extends beyond the use of computers and digital tools to spatial reasoning in general.
keywords Computational making, Parametric design, Digital craft.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_28
id acadia17_28
authors Aguiar, Rita; Cardoso, Carmo; Leit?o,António
year 2017
title Algorithmic Design and Analysis Fusing Disciplines
doi https://doi.org/10.52842/conf.acadia.2017.028
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 28-37
summary In the past, there has been a rapid evolution in computational tools to represent and analyze architectural designs. Analysis tools can be used in all stages of the design process, but they are often only used in the final stages, where it might be too late to impact the design. This is due to the considerable time and effort typically needed to produce the analytical models required by the analysis tools. A possible solution would be to convert the digital architectural models into analytical ones, but unfortunately, this often results in errors and frequently the analytical models need to be built almost from scratch. These issues discourage architects from doing a performance-oriented exploration of their designs in the early stages of a project. To overcome these issues, we propose Algorithmic Design and Analysis, a method for analysis that is based on adapting and extending an algorithmic-based design representation so that the modeling operations can generate the elements of the analytical model containing solely the information required by the analysis tool. Using this method, the same algorithm that produces the digital architectural model can also automatically generate analytical models for different types of analysis. Using the proposed method, there is no information loss and architects do not need additional work to perform the analysis. This encourages architects to explore several design alternatives while taking into account the design’s performance. Moreover, when architects know the set of design variations they wish to analyze beforehand, they can easily automate the analysis process.
keywords design methods; information processing; simulation & optimization; BIM; generative system
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_085
id ecaade2017_085
authors Agustí-Juan, Isolda, Hollberg, Alexander and Habert, Guillaume
year 2017
title Integration of environmental criteria in early stages of digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2017.2.185
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 185-192
summary The construction sector is responsible for a big share of the global energy, resource demand and greenhouse gas emissions. As such, buildings and their designers are key players for carbon mitigation actions. Current research in digital fabrication is beginning to reveal its potential to improve the sustainability of the construction sector. To evaluate the environmental performance of buildings, life cycle assessment (LCA) is commonly employed. Recent research developments have successfully linked LCA to CAD and BIM tools for a faster evaluation of environmental impacts. However, these are only partially applicable to digital fabrication, because of differences in the design process. In contrast to conventional construction, in digital fabrication the geometry is the consequence of the definition of functional, structural and fabrication parameters during design. Therefore, this paper presents an LCA-based method for design-integrated environmental assessment of digitally fabricated building elements. The method is divided into four levels of detail following the degree of available information during the design process. Finally, the method is applied to the case study "Mesh Mould", a digitally fabricated complex concrete wall that does not require any formwork. The results prove the applicability of the method and highlight the environmental benefits digital fabrication can provide.
keywords Digital fabrication; Parametric LCA; Early design; Sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2017_115
id cf2017_115
authors Alambeigi, Pantea; Chen, Canhui; Burry, Jane; Cheng, Eva
year 2017
title Shape the Design with Sound Performance Prediction: A Case Study for Exploring the Impact of Early Sound Performance Prediction on Architectural Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 115-127.
summary Acoustics is typically considered only late in developed design or even post occupancy, if at all, for specification of finishes and furnishing, and typically with a remedial mindset. In this paper, the role of sound performance as a design driver in increasing the speech privacy of a semi-enclosed meeting space in an open plan interior is studied. Sound performance prediction is applied as an imperative input to inform the meeting space design. The design is the second iteration in an evolving series of meeting spaces, and therefore has benefited from both subjective experiments and objective measurements performed with the first meeting space prototype. This study promotes a design method that offers a strong relationship between the digital simulation of sound performance and design development. By improving the speech privacy of a meeting space by means of purely form, geometry and design decisions, the significance of architecture in tuning the sound performance of a space is investigated.
keywords Sound Performance Prediction, Sound Simulation, Meeting Space, Architectural Design
series CAAD Futures
email
last changed 2017/12/01 14:37

_id sigradi2017_016
id sigradi2017_016
authors Alexandre da Silva, Geovany Jessé; Carlos Alejandro Nome, Lucy Donegan
year 2017
title Ferramentas de Projeto para análise da qualidade urbana: Relacionando forma, usos, densidade e configuração espacial na cidade de João Pessoa, Brasil. [Design tools to assess urban quality: Relating form, uses, density and spatial configuration in João Pessoa city, Brazil.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.123-129
summary This paper describes an experience in a Graduate course Architecture and Urbanism that used computational tools to analyze urban quality – considering form, uses, density and spatial configuration (based on visual and fields) – in different urban areas in the city of João Pessoa. Understanding that the city is a problem in organized complexity, different aspects condition the quality of use of spaces and reveal urban dynamics. Urban analysis aided by computational tools revealed successful in characterizing different problems and potentialities that can lay the foundation for interventions with more urban quality.
keywords Design computational tools; Study of urban form, uses and density; Urban space performance; Spatial configuration.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_175
id ecaade2017_175
authors Alfaiate, Pedro and Leit?o, António
year 2017
title Luna Moth - A Web-based Programming Environment for Generative Design
doi https://doi.org/10.52842/conf.ecaade.2017.2.511
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 511-518
summary Current Generative Design (GD) tools require installation and regular updates. On top of that, programs that are created using them are stored as files, which have to be moved and shared manually with others. On the other hand, web applications are accessible using just a web browser and they can also store information remotely, meaning that it does not need to be moved and is easily shared with others. Consequently, GD tools should also be available as web applications to get the same functionality. We present Luna Moth, an IDE for GD available from the web that shows the relationship between a program and its results and integrates into the architect's workflow. Then, we give examples where Luna Moth's features help the architect during the programming process. Finally, we compare Luna Moth's performance with other IDEs, namely, Grasshopper, OpenJSCAD, and Rosetta.
keywords Generative Design; Web application; Design tool integration;
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
doi https://doi.org/10.52842/conf.acadia.2017.102
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_765931 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002