CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 360

_id cf2017_101
id cf2017_101
authors Chen, Nai Chun; Zhang, Yan; Stephens, Marrisa; Nagakura, Takehiko; Larson, Kent
year 2017
title Urban Data Mining with Natural Language Processing: Social Media as Complementary Tool for Urban Decision Making
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 101-109.
summary The presence of web2.0 and traceable mobile devices creates new opportunities for urban designers to understand cities through an analysis of user-generated data. The emergence of “big data” has resulted in a large amount of information documenting daily events, perceptions, thoughts, and emotions of citizens, all annotated with the location and time that they were recorded. This data presents an unprecedented opportunity to gauge public opinion about the topic of interest. Natural language processing with social media is a novel tool complementary to traditional survey methods. In this paper, we validate these methods using tourism data from Trip-Advisor in Andorra. “Natural language processing” (NLP) detects patterns within written languages, enabling researchers to infer sentiment by parsing sentences from social media. We applied sentiment analysis to reviews of tourist attractions and restaurants. We found that there were distinct geographic regions in Andorra where amenities were reviewed as either uniformly positive or negative. For example, correlating negative reviews of parking availability with land use data revealed a shortage of parking associated with a known traffic congestion issue, validating our methods. We believe that the application of NLP to social media data can be a complementary tool for urban decision making.
keywords Short Paper, Urban Design Decision Making, Social Media, Natural Language Processing
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_067
id ecaade2017_067
authors Liu, Chenjun, Wang, Tsung-Hsien, Meagher, Mark and Peng, Chengzhi
year 2017
title Feather-inspired social media data processing for generating developable surfaces: Prototyping an affective architecture - Prototyping an affective architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.181
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 181-190
summary This paper presents the development of an interactive installation intended as a prototype of experimental affective architecture connected with social media data processing. Social moods and emotions are now spread more widely and faster than ever before due to pervasive uses of social media platforms. We explore how data processing of users' expressions and sharing of moods/emotions through social media can become a source of influences on shaping the form and behaviour of interactive architecture. The interactive prototyping method includes (1) a feather-inspired data-to-shape rule system together with the ShapeOp Library for generating strips as developable surfaces, (2) a physical computing platform built with Arduino micro-processor and shape memory alloy springs for actuation, and (3) physical model-making. As a prototype of social media aware affective architecture, an interactive installation design is proposed for a campus space where the actuation of the strip installation is linked to data processing of Twitter messages collated from users on campus. We reflect on the prototyping methodology and the implications of an architecture affected by people's expression of moods/emotions through social media.
keywords social media data processing; developable surfaces; interactive prototyping; shape memory alloy; elastic morphing; ShapeOp
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2017_256
id ecaade2017_256
authors Symeonidou, Ioanna
year 2017
title Reinventing Design-Build projects with the use of digital media for design and construction - A survey of 120 educational pavilions
doi https://doi.org/10.52842/conf.ecaade.2017.1.231
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 231-240
summary During the last decade the hype for digitally fabricated educational pavilions has become very popular among architecture schools. A survey with the aim to catalogue and classify educational pavilions revealed more than 120 cases of digitally fabricated pavilions within the last decade. The analysis of the sample of 120 Design-Build projects built during the period 2006-2016 revealed, apart from obvious similarities and differences, the prevailing trends relating to the materials and the technology used for the design, manufacturing and assembly. From the processing of the gathered data a set of typologies emerge, which relate both to morphological characteristics as well as to the design process. The paper concludes by discussing the advantages and critical points of this educational practice and the learning outcomes for both students and educators.
keywords Design-Build; Digital fabrication; architectural education; CAD / CAM; pavilions
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_208
id ecaade2017_208
authors Beaudry Marchand, Emmanuel, Han, Xueying and Dorta, Tomás
year 2017
title Immersive retrospection by video-photogrammetry - UX assessment tool of interactions in museums, a case study
doi https://doi.org/10.52842/conf.ecaade.2017.2.729
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
summary Studying interactions in museums often omits to consider the complexity of the space and the visitors' behaviors. Visitors' walking paths do not provide enough insight of their user experience (UX) since they are distant from the experiential realities. Videogrammetry can convey such dimensions of an environmental experience. Because of limitations of real-time playback, a twofold approach is suggested: "immersive videos" combined with "photogrammetric models". A granular optimal experience assessment method using retrospection interviews is also applied providing a finer evaluation of the perceived experience through time. This method permits to characterize museum interactive installations, according to the perceived challenges and skills of the interaction's task, based this time on immersive retrospection. This paper proposes the "Immersive retrospection" by "Immersive video-photogrammetry" as a UX assessment tool of interactions in museums. A hybrid virtual environment was used in this study, allowing social VR without the use of headsets, through a life-sized projection of interactive 3D content. The study showed that Immersive video-photogrammetry facilitates the recall of memories and allows a deepened self-observation analysis.
keywords immersive retrospection; photogrammetry; videogrammetry; UX assessment; museum environments
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2017_085
id caadria2017_085
authors Lee, Yong-Ju, Kim, Mi-Kyoung and Jun, Han-Jong
year 2017
title Green Standard for Energy and Environmental Design - The Development of an Assessment System Based on a Green BIM Template
doi https://doi.org/10.52842/conf.caadria.2017.623
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 623-632
summary To construct a building that meets the requirements of certification in terms of environmental friendliness, there must be a process that considers the certification criteria from the initial design phase. However, there are numerous complicated task performance procedures to analyse many required items in detail as well as perceive and apply the data requirements efficiently. Currently, Building Information Modeling (BIM) is gaining attention as a solution for environmental problems in architecture. BIM shows precisely how a virtual building is modelled in the real world, thereby providing an objective information and analysis through a simulation. However, the result values of BIM library or modelling may turn out differently as a result of the work environment of designers or users that is not standardized. Therefore, this study applies the modelled and extracted BIM data using the template and library established in the BIM add-in planning and design phase to review in advance the Green Standard for Energy and Environmental Design (G-SEED) assessment by item and manual input of users with the BIM-based (add-in) G-SEED assessment system, thereby providing support to enable users to establish specific strategies in designing green buildings.
keywords GBT; G-SEED; BIM System; BIM Add-in; Apartment
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac201715104
id ijac201715104
authors Matalucci, Berardo; Kenton Phillips, Alicia A Walf, Anna Dyson and Joshua Draper
year 2017
title An experimental design framework for the personalization of indoor microclimates through feedback loops between responsive thermal systems and occupant biometrics
source International Journal of Architectural Computing vol. 15 - no. 1, 54-69
summary How can building technologies accommodate different and often conflicting user preferences without dissolving the social cohesiveness, intrinsic of every architectural intervention? Individual thermal comfort has often been considered a negligible sensorial experience by modern heating and cooling technologies, and is often influenced by large-group norms. Alternatively, we propose that buildings are repositories of indoor microclimates that can be realized to provide personalized comfort, to create healthier environments, and to enhance the attributes of architectural interventions into haptic dimensions. In response, the goal of this study is to characterize an experimental framework that integrates responsive thermal systems with occupants’ direct and indirect experience, which includes stress response and biometric data. A computational model was used up to inform and analyze thermal perception of subjects, and later tested in a responsive physical installation. While results show that thermal comfort assessment is affected by individual differences including cognitive functions and biometrics, further computational efforts are needed to validate biometric indicators. Finally, the implications of personalized built environments are discussed with respect to future technology developments and possibilities of design driven by biometric data.
keywords Personalized thermal comfort, interactive building technologies, bio-feedback loops, indoor microclimates
series other
type normal paper
email
last changed 2019/08/02 08:28

_id cf2017_415
id cf2017_415
authors Tschetwertak, Julia; Schneider, Sven; Hollberg, Alexander; Donath, Dirk; Ruth, Jürgen
year 2017
title A Matter of Sequence: Investigating the Impact of the Order of Design Decisions in Multi-Stage Design Processes
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 415.
summary The design as a process is not a new topic in architecture, yet some theories are widely unexplored, such as the multi-stage decision-making (MD) process. This design method provides multiple solutions for one design problem and is characterized by design stages. By adding new building components in every stage, multiple solutions are created for each design solution from the previous stage. If the MD process is to be applied in architectural practice, fundamental and theoretical knowledge about it becomes necessary. This paper investigates the impact of sequence of design stages on the design solutions in the MD process. A basic case study provides the necessary data for comparing different sequences and gaining fundamental knowledge of the MD process. The study contains a parametric model for building generation, a parametric Life Cycle Assessment tool and an optimization mechanism based on Evolutionary Algorithms.
keywords Multi-stage decision-making process, Design process, Life Cycle Performance, Design Automation
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_82
id acadia17_82
authors Andreani, Stefano; Sayegh, Allen
year 2017
title Augmented Urban Experiences: Technologically Enhanced Design Research Methods for Revealing Hidden Qualities of the Built Environment
doi https://doi.org/10.52842/conf.acadia.2017.082
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 82-91
summary The built environment is a complex juxtaposition of static matter and dynamic flows, tangible objects and human experiences, physical realities and digital spaces. This paper offers an alternative understanding of those dichotomies by applying experimental design research strategies that combine objective quantification and subjective perception of urban contexts. The assumption is that layers of measurable datasets can be afforded with personal feedback to reveal "hidden" characteristics of cities. Drawing on studies from data and cognitive sciences, the proposed method allows us to analyze, quantify and visualize the individual experience of the built environment in relation to different urban qualities. By operating in between the scientific domain and the design realm, four design research experiments are presented. Leveraging augmenting and sensing technologies, these studies investigate: (1) urban attractors and user attention, employing eye-tracking technologies during walking; (2) urban proxemics and sensory experience, applying proximity sensors and EEG scanners in varying contexts; (3) urban mood and spatial perception, using mobile applications to merge tangible qualities and subjective feelings; and (4) urban vibe and paced dynamics, combining vibration sensing and observational data for studying city beats. This work demonstrates that, by adopting a multisensory and multidisciplinary approach, it is possible to gain a more human-centered, and perhaps novel understanding of the built environment. A lexicon of experimented urban situations may become a reference for studying different typologies of environments from the user experience, and provide a framework to support creative intuition for the development of more engaging, pleasant, and responsive spaces and places.
keywords design methods; information processing; art and technology; hybrid practices
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_234
id ecaade2017_234
authors Benetti, Alberto, Favargiotti, Sara and Ricci, Mos?
year 2017
title RE.S.U.ME. - REsilient and Smart Urban MEtabolism
doi https://doi.org/10.52842/conf.ecaade.2017.1.1113
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 1113-1120
summary New technologies and uncontrolled open-data policies lead public to a new way of approaching the built environment. To enlarge the competences of the professionals that work within the cities, we believe that providing a deep and dynamic knowledge on the heritage and urban built environment is the more effective solution to offer a unique support to the needs. By providing a boosted geographical database with detailed information about the status of each building, we aim to support the professional by providing a neat vision about vacant buildings available citywide. We think this knowledge is an important asset in covering every kind of public requests: from flat to rent to an abandoned building to restore or to drive better investors. The city of Trento will be the pilot project to test these statements.We studied the phenomenon of pushing new constructions rather investing on the reuse of abandoned buildings with the consequences of unsustainable land use. To address the work we adopted a comprehensive approach across the fields of urbanism, ICT engineering and social sciences. We believe that sharing knowledge and know-hows with municipalities, agencies, and citizens is the way to support better market strategies as well as urban transformation policies.
keywords Information Technology; Urban Metabolism; Re-cycle; Urban Reserves; Policy Decision-Making; Data-driven Analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_138
id acadia17_138
authors Berry, Jaclyn; Park, Kat
year 2017
title A Passive System for Quantifying Indoor Space Utilization
doi https://doi.org/10.52842/conf.acadia.2017.138
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 138-145
summary This paper presents the development of a prototype for a new sensing device for anonymously evaluating space utilization, which includes usage factors such as occupancy levels, congregation and circulation patterns. This work builds on existing methods and technology for measuring building performance, human comfort and occupant experience in post-occupancy evaluations as well as pre-design strategic planning. The ability to collect data related to utilization and occupant experience has increased significantly due to the greater accessibility of sensor systems in recent years. As a result, designers are exploring new methods to empirically verify spatial properties that have traditionally been considered more qualitative in nature. With this premise, this study challenges current strategies that rely heavily on manual data collection and survey reports. The proposed sensing device is designed to supplement the traditional manual method with a new layer of automated, unbiased data that is capable of capturing environmental and social qualities of a given space. In a controlled experiment, the authors found that the data collected from the sensing device can be extrapolated to show how layout, spatial interventions or other design factors affect circulation, congregation, productivity, and occupancy in an office setting. In the future, this sensing device could provide designers with real-time feedback about how their designs influence occupants’ experiences, and thus allow the designers to base what are currently intuition-based decisions on reliable data and evidence.
keywords design methods; information processing; smart buildings; IoT
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
doi https://doi.org/10.52842/conf.caadria.2017.685
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia17_232
id acadia17_232
authors Doyle, Shelby; Forehand, Leslie; Senske, Nick
year 2017
title Computational Feminism: Searching for Cyborgs
doi https://doi.org/10.52842/conf.acadia.2017.232
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 232-237
summary As computational design matures, the discipline is in a position to address an increasing number of cultural dimensions: social, political, and ethical. This paper examines the gender gap in computational design and proposes an agenda to achieve gender equality. Data from architectural publications and the CumInCAD database provide metrics for measuring the segregation between feminist and computational discourse. Examples of feminist theory establish possible entry points within computational design to bridge the gaps in gender equity and representation. Specifically, the authors re-examine 1990s networked feminism in relation to the computational culture of today. The paper concludes with a proposed definition of Computational Feminism as a social, political, and ethical discourse. This definition appropriates Donna Haraway’s cyborg as its symbolic instrument of equality.
keywords design methods; information processing; education; representation; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_113
id caadria2017_113
authors Huang, Weixin, Lin, Yuming and Wu, Mingbo
year 2017
title Spatial-Temporal Behavior Analysis Using Big Data Acquired by Wi-Fi Indoor Positioning System
doi https://doi.org/10.52842/conf.caadria.2017.745
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 745-754
summary Understanding of people's spatial behavior is fundamental to architectural and urban design. However, traditional investigation methods applied in environmental behavior studies is highly limited regarding the amount of samples and regions it covers, which is not sufficient for the exploration of complex dynamic human behaviors and social activities in architectural space. Only recently the developments in indoor positioning system (IPS) and big data analysis technique have made it possible to conduct a full-time, full-coverage study on human environmental behavior. Among the variety IPS systems, the Wi-Fi IPS system is increasingly widely used because it is easy to be applied with acceptable cost. In this paper, we analyzed a 60-days anonymized data set, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. The analysis revealed interesting patterns on people's behavior besides temporal spatial distribution, ranging from the cyclical fluctuation in human flow to behavioral patterns of sub-regions, some of which are not easy to be identified and interpreted by the traditional field observation. Through this case study, behavioral data from IPS system has exhibited great potential in bringing about profound changes in the study of environmental behavior.
keywords environmental behavior study; Wi-Fi; indoor positioning system; big data; spatial temporal behavior; ski resort
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2017_109
id caadria2017_109
authors Imanishi, Naoki, Hinoki, Shinichiro, Muraoka, Mizuki, Tateyama, Ran, Abe, U-ichi, Kensuke, Hotta and Ikeda, Yasushi
year 2017
title Bamboo Concrete Shells - An Adaptable Construction Method Using Onsite Materials in a Remote Location
doi https://doi.org/10.52842/conf.caadria.2017.445
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 445-455
summary This paper proposes an on site construction support system using digital techniques to solve the issue of logistical inconvenience on remote islands, where industrialized construction methods are absent. Transporting heavy machinery is costly and difficult in isolated rural areas. In addition, introducing materials from outside creates a heavy ecological footprint when building. Locally produced construction materials resolve many of these issues. To test the potential of building within these constraints a case study site on an isolated island of Japan, named Kuchinoerabu, was chosen. A concrete shell structure was created using locally sourced bamboo as reinforcement. Through the study, several technical issues are revealed. Significantly, there is broad variation in the material properties of bamboo, and reducing errors when using unskilled labor is difficult. The system nominally manages the following functions: 1) Synchronizing data between CAD and the materialized form; 2) Checking errors between the target form and the one that was actually produced; 3) Inputting material characteristics on site. 4) Making a structural analysis, and reflecting its execution during construction. These functions minimize the margin of error, and aid an unskilled labor force to work more accurately.
keywords Bamboo; natural material; digital construction
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
doi https://doi.org/10.52842/conf.acadia.2017.330
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_051
id caadria2017_051
authors Liu, Yuezhong and Stouffs, Rudi
year 2017
title Familiar and Unfamiliar Data Sets in Sustainable Urban Planning
doi https://doi.org/10.52842/conf.caadria.2017.705
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 705-714
summary Achieving energy efficient urban planning requires a multi-disciplinary planning approach. The huge increase in data from sensors and simulations does not help to reduce the burden of planners. On the contrary, unfamiliar multi-disciplinary data sets can bring planners into a hopeless tangle. This paper applies semi-supervised learning methods to address such planning data issues. A case study is used to demonstrate the proposed method with respect to three performance issues: solar heat gains, natural ventilation and daylight. The result shows that the method addressing both familiar and unfamiliar data has the ability to guide the planner during the planning process.
keywords energy performance; S3VM; decision tree; familiar and unfamiliar.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2017_019
id ecaade2017_019
authors Liu, Yuezhong, Stouffs, Rudi and Tablada, Abel
year 2017
title Rethinking the Urban Design Process from a Data Perspective
doi https://doi.org/10.52842/conf.ecaade.2017.1.449
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 449-460
summary Urban design always requires the processing of large amounts of data from multi-disciplinary sources during the decision-making stages. However, unfamiliar multi-disciplinary data sets can only lead to confusion and uncertainty. This research proposes a data-driven approach for supporting the urban design process. A hybrid data mining method is used to cluster, classify and rank solution-instances according to geometrical properties and energy performance. An urban design case study is used to demonstrate the proposed method with respect to two performance issues: solar heat gains and natural ventilation. The result shows that the method addressing both familiar and unfamiliar data can effectively guide the designer during the design process.
keywords energy performance; S3VM; decision tree; familiar and unfamiliar
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
doi https://doi.org/10.52842/conf.caadria.2018.2.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_106605 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002