CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 476

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2017_271
id ecaade2017_271
authors Narahara, Taro
year 2017
title Collective Construction Modeling and Machine Learning: Potential for Architectural Design
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 341-348
doi https://doi.org/10.52842/conf.ecaade.2017.2.341
summary Recently, there are significant developments in artificial intelligence using advanced machine learning algorithms such as deep neural networks. These new methods can defeat human expert players in strategy-based board games such as Go and video games such as Breakout. This paper suggests a way to incorporate such advanced computing methods into architectural design through introducing a simple conceptual design project inspired by computational interpretations of wasps' collective constructions. At this stage, the paper's intent is not to introduce a practical and fully finished tool directly useful for architectural design. Instead, the paper proposes an example of a program that can potentially become a conceptual framework for incorporating such advanced methods into architectural design.
keywords Design tools; Stigmergy; Machine learning
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2017_009
id ecaade2017_009
authors Takizawa, Atsushi and Furuta, Airi
year 2017
title 3D Spatial Analysis Method with First-Person Viewpoint by Deep Convolutional Neural Network with Omnidirectional RGB and Depth Images
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 693-702
doi https://doi.org/10.52842/conf.ecaade.2017.2.693
summary The fields of architecture and urban planning widely apply spatial analysis based on images. However, many features can influence the spatial conditions, not all of which can be explicitly defined. In this research, we propose a new deep learning framework for extracting spatial features without explicitly specifying them and use these features for spatial analysis and prediction. As a first step, we establish a deep convolution neural network (DCNN) learning problem with omnidirectional images that include depth images as well as ordinary RGB images. We then use these images as explanatory variables in a game engine to predict a subjects' preference regarding a virtual urban space. DCNNs learn the relationship between the evaluation result and the omnidirectional camera images and we confirm the prediction accuracy of the verification data.
keywords Space evaluation; deep convolutional neural network; omnidirectional image; depth image; Unity; virtual reality
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_92
id acadia17_92
authors Anzalone, Phillip; Bayard, Stephanie; Steenblik, Ralph S.
year 2017
title Rapidly Deployed and Assembled Tensegrity System: An Augmented Design Approach
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 92-101
doi https://doi.org/10.52842/conf.acadia.2017.092
summary The Rapidly Deployable and Assembled Tensegrity (RDAT) project enables the efficient automated design and deployment of differential-geometry tensegrity structures through computation-driven design-to-installation workflow. RDAT employs the integration of parametric and solid-modeling methods with production by streamlining computer numerically controlled manufacturing through novel detailing and production techniques to develop an efficient manufacturing and assembly system. The RDAT project emerges from the Authors' research in academia and professional practice focusing on computationally produced full-scale performative building systems and their innovative uses in the building and construction industry.
keywords design methods; information processing; AI; machine learning; form finding; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id ijac201715105
id ijac201715105
authors Nahmad Vazque, Alicia and Wassim Jabi
year 2017
title Investigations in robotic-assisted design: Strategies for symbiotic agencies in material-directed generative design processes
source International Journal of Architectural Computing vol. 15 - no. 1, 70-86
summary The research described in this article utilises a phase-changing material, three-dimensional scanning technologies and a six-axis industrial robotic arms as vehicles to enable a novel framework where robotic technology is utilised as an ‘amplifier’ of the design process to realise geometries that derive from both constructive visions and architectural visions through iterative feedback loops between them. The robot in this scenario is not a fabrication tool but the enabler of an environment where the material, robotic and human agencies interact. This article describes the exploratory research for the development of a dialogic design process, sets the framework for its implementation, carries out an evaluation based on designer use and concludes with a set of observations. One of the main findings of this article is that a deeper collaboration that acknowledges the potential of these tools, in a learning-by-design method, can lead to new choreographies for architectural design and fabrication.
keywords Robotic fabrication, human-machine networks, digital design, agency
series other
type normal paper
email
last changed 2019/08/02 08:28

_id ecaade2017_041
id ecaade2017_041
authors Fukuda, Tomohiro, Kuwamuro, Yasuyuki and Yabuki, Nobuyoshi
year 2017
title Optical Integrity of Diminished Reality Using Deep Learning
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 241-250
doi https://doi.org/10.52842/conf.ecaade.2017.1.241
summary A new method is proposed to improve diminished reality (DR) simulations to allow the demolition and removal of entire buildings in large-scale spaces. Our research goal was to obtain optical integrity by using a scientific and reliable simulation approach. Further, we tackled presumption of the texture of the background sky by applying deep learning. Our approach extracted the background sky using information from the actual sky obtained from a photographed image. This method comprised two steps: (1) detection of the sky area from the image through image segmentation and (2) creation of an image of the sky through image inpainting. The deep convolutional neural networks developed by us to train and predict images were evaluated to be feasible and effective.
keywords Diminished Reality; Optical Integrity; Deep Learning; Augmented Reality; Landscape assessment
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_017
id caadria2017_017
authors Park, Hyejin, Lee, Seunghyun, Kim, Eonyong and Choo, Seungyeon
year 2017
title A Proposal for Building Safety Diagnosis Processes using BIM-based Reverse Engineering Technology
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 673-682
doi https://doi.org/10.52842/conf.caadria.2017.673
summary Recently, the aging of buildings is accelerating around the world. In line with this, architectural structures constructed long time ago require life extension and ongoing management and protection for improvement, because they are too deteriorated. In particular, since structural safety inspection and analysis in building is very important, 'DFS (Design For Safety)'system has been introduced and conducted at the national level in Korea for the whole building life cycle management system encompassing the entire design, work commencement, construction, and completion stages. However, we do not have a system ranging from repair and reinforcement work plans in doing safety design, structural inspection and analysis to ongoing safety inspection. Therefore, it is necessary to establish a system to produce and share integrated information and conduct a research to manage architectural structure across the whole life cycle. Accordingly, this study aims to propose BIM-based reverse engineering technology for generating a safety management model based on laser scanner, verify the investigation items to be utilized of the design when building safety, and seek ways to utilize them for safety design.
keywords BIM; reverse engineering; building safety diagnosis; laser scanning; design for safety
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2017_041
id caadria2017_041
authors Tan, Rachel, Sia, Chin Kiat, Tee, Yong Kiat, Koh, Kendall and Dritsas, Stylianos
year 2017
title Developing Composite Wood for 3D-Printing
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 831-840
doi https://doi.org/10.52842/conf.caadria.2017.831
summary We present the initial findings of our research project aiming at development of a 3D-printing process for wood composites. The 3D-printing method employed is based on material extrusion principle and utilizes industrial robotics for position and motion control. The unique characteristic of our approach is in the development of the material where we employ exclusively organic components for both the matrix and reinforcement; a decision informed by prioritizing environmental considerations.
keywords Digital Fabrication; Additive Manufacturing; 3D Printing; Wood Composites; Robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_021
id ecaade2017_021
authors Agirbas, Asli
year 2017
title The Use of Simulation for Creating Folding Structures - A Teaching Model
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 325-332
doi https://doi.org/10.52842/conf.ecaade.2017.1.325
summary In architectural education, the demand for creating forms with a non-Euclidean geometry, which can only be achieved by using the computer-aided design tools, is increasing. The teaching of this subject is a great challenge for both students and instructors, because of the intensive nature of architecture undergraduate programs. Therefore, for the creation of those forms with a non-Euclidean geometry, experimental work was carried out in an elective course based on the learning visual programming language. The creation of folding structures with form-finding by simulation was chosen as the subject of the design production which would be done as part of the content of the course. In this particular course, it was intended that all stages should be experienced, from the modeling in the virtual environment to the digital fabrication. Hence, in their early years of architectural education, the students were able to learn versatile thinking by experiencing, simultaneously, the use of simulation in the environment of visual programming language, the forming space by using folding structures, the material-based thinking and the creation of their designs suitable to the digital fabrication.
keywords Folding Structures; CAAD; Simulation; Form-finding; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_069
id sigradi2017_069
authors Briones Lazo, Carolina; Carolina Soto Ogueta
year 2017
title La enseñanza de BIM en Chile, el desafío de un cambio de enfoque centrado en la metodología por sobre la tecnología. [BIM education in Chile, the challenge of a shift of focus centered on methodology over technology.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.470-478
summary This article presents the level of adoption of BIM in Chile referring to recent studies carried out in the country, demonstrating that there has not been a significant increase in the use of this methodology by the industry. According to the analysis of international cases on educational frameworks, the authors argue that the development of a national education strategy for BIM with a focus on defining BIM capabilities required to assume the national mandate 2020, along with promoting collaborative work environments and active learning methodologies would be very beneficial.
keywords Building Information Modelling; Metodología BIM; Adopción de BIM; Estrategia de enseñanza de BIM.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
doi https://doi.org/10.52842/conf.acadia.2017.164
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2017.685
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2018.2.545
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
doi https://doi.org/10.52842/conf.acadia.2017.238
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id cf2017_533
id cf2017_533
authors El-Zanfaly, Dina; Abdelmohsen, Sherif
year 2017
title Imitation in Action: A Pedagogical Approach for Making Kinetic Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 533-545.
summary One of the problems in teaching students how to design kinetic architecture is the difficulty of helping them grasp concepts like motion, physical computing and fabrication, concepts not generally dealt with in conventional architectural projects. In this paper, we introduce a pedagogical method for better utilizing prototyping and explore the role prototyping plays in learning and conceptualizing design ideas. Our method is based on building the learner’s sensory experience through iteration and focusing on the process as well as the product. Specifically, our research attempts to address the following questions: How can architecture students anticipate and feel motion while they design kinetic prototypes? How do their prototypes enable them to explore design ideas? As a case study, we applied our methodology in an 8-week workshop in a fabrication laboratory in Cairo, Egypt. The workshop was open to young architects and students who had completed at least four semesters of study at the university. We describe the pedagogical approach we developed to build the sensory experience of making motion, and demonstrate the basic setting and stages of the workshop. We show how a cyclical learning process, based on perception and action -- copying and iteration -- contributed to the students’ learning experience and enabled them to create and improvise on their own.
keywords Kinetic Architecture, Digital Fabrication, Sensory Experience, Computational Making, Imitation
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_140
id ecaade2017_140
authors Eversmann, Philipp
year 2017
title Digital Fabrication in Education - Strategies and Concepts for Large-Scale Projects
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 333-342
doi https://doi.org/10.52842/conf.ecaade.2017.1.333
summary The consequences of automation technology on industry are currently widely discussed in terms of future tasks, work organisation and working environments. Even though various novel education programmes specialise in digital fabrication, relatively little has been written on concepts for a deeper integration of digital technologies in the architectural curriculum. This paper gives an overview of interdisciplinary educational approaches and digital project development techniques and describes a teaching method featuring intensive collaboration with research and industry, an iterative teaching method employing digital production of large-scale prototypes and a moderated self-learning process. We describe two examples of teaching initiatives in particular that were undertaken at TU Munich and ETH Zurich and analyse their results in terms of physical outcomes, teaching accomplishments, resource efficiency and connection to research. We discuss the relationship between necessary teaching intensity, project size and complexity of digital fabrication equipment and conclude by giving an outlook for future initiatives.
keywords interdisciplinary collaboration; iterative process; self-learning
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_jgo
id ecaade2017_jgo
authors Gero, John S.
year 2017
title Cognitive Design Computing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 37-40
doi https://doi.org/10.52842/conf.ecaade.2017.1.037
summary This talk describes the foundational concepts of cognitive design computing and then presents some examples. Cognitive computing is concerned with modeling human cognition computationally and using that model as the foundation for constructing computer models of design activities. Human cognition is based on perception, learning and adaptation. Here we present human cognition in terms of situated cognition - cognition involving interaction with an environment. The talk briefly introduces a set of principles for cognitive design computing founded on the three concepts of interaction, constructive memory and situatedness. It then presents two examples of applications of this approach.
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_654050 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002