CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 575

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac201715402
id ijac201715402
authors Alaçam, Sema; Orkan Zeynel Güzelci, Ethem Gürer and Saadet Zeynep Bac?noglu
year 2017
title Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics
source International Journal of Architectural Computing vol. 15 - no. 4, 285-303
summary This study sheds light on a holistic understanding of muqarnas with its historical, philosophical and conceptual backgrounds on one hand and formal, structural and algorithmic principles on the other hand. The vault-like Islamic architectural element, muqarnas, is generally considered to be a non-structural decorative element. Various compositional approaches have been proposed to reveal the inner logic of these complex geometric elements. Each of these approaches uses different techniques such as measuring, unit-based decoding or three-dimensional interpretation of two-dimensional patterns. However, the reflections of the inner logic onto different contexts, such as the usage of different initial geometries, materials or performative concerns, were neglected. In this study, we offer a new schema to approach the performative aspects of muqarnas tectonics. This schema contains new sets of elements, properties and relations deriving partly from previous approaches and partly from the technique of folding. Thus, this study first reviews the previous approaches to analyse the geometric and constructional principles of muqarnas. Second, it explains the proposed scheme through a series of algorithmic form-finding experiments. In these experiments, we question whether ‘fold’, as one of the performative techniques of making three-dimensional forms, contributes to the analysis of muqarnas in both a conceptual and computational sense. We argue that encoding vault-like systems via geometric and algorithmic relations based on the logic of the ‘fold’ provides informative and intuitive feedback for form-finding, specifically in the earlier phases of design. While focusing on the performative potential of a specific fold operation, we introduced the concept of bifurcation to describe the generative characteristics of folding technique and the way of subdividing the form with respect to redistribution of the forces. Thus, in this decoding process, the bifurcated fold explains not only to demystify the formal logic of muqarnas but also to generate new forms without losing contextual conditions.
keywords Muqarnas, vault, layering, folding, force flow, bifurcation
series journal
email
last changed 2019/08/07 14:03

_id caadria2017_115
id caadria2017_115
authors Araullo, Rebekah and Haeusler, M. Hank
year 2017
title Asymmetrical Double-Notch Connection System in Planar Reciprocal Frame Structures
doi https://doi.org/10.52842/conf.caadria.2017.539
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 539-548
summary Reciprocal Frame Structures (RF) have broad application potentials. Flexible to using small available materials, they span large areas, including varied curvature and doubly-curved forms. Although not many buildings using RF have been constructed to date, records indicate RF efficiencies where timber was widely used in structures predating modern construction. For reasons of adaptability and economy, advances in computation and fabrication precipitated increase in research into RF structures as a contemporary architectural typology. One can observe that linear timber such as rods and bars feature in extensive RF research. However, interest in planar RF has only recently emerged in research. Hence one can argue that planar RF provides depth to explore new design possibilities. This paper contributes to the growing knowledge of planar RF by presenting a design project that demonstrates an approach in notching systems to explore design and structural performance. The design project, the developed design workflow, fabrication, assembly and evaluation are discussed in this paper.
keywords Reciprocal Frame Structures; Space Frames; Computational Design; Digital Fabrication; Deployable Architecture
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715101
id ijac201715101
authors Bieg, Kory and Clay Odom
year 2017
title Lumifoil and Tschumi: Virtual projections and architectural interventions
source International Journal of Architectural Computing vol. 15 - no. 1, 6-17
summary This article introduces the theoretical and technical framework for the design of a temporary rooftop canopy on the red generator—one of the buildings designed by Bernard Tschumi for the Florida International University School of Architecture. The project, Lumifoil, was designed using both top-down and bottom-up computational techniques, including surface modeling via projected geometries and scripted cellular subdivisions and assemblies. Lumifoil attempts to synthesize these two often-conflicting design approaches into a generative design process which leverages context, form, surface, and structure as affective and effective actors. Lumifoil is the result of a design methodology which is both active and reactive to existing conditions of the site and new opportunities afforded by the program. It is contextual in its top-down relationship to Tschumi’s existing building and theory, generative in how details emerge bottom-up through scripts which lack any reference to site, and emergent in the resulting synthetic processes and effects which are produced. Through this methodological development, the project both tracks and responds to popular architectural theory and design from the mid-1990s to today. The theoretical underpinnings of the project build upon the idea that the actual (the real-life physical manifestation of matter) and the virtual (the potential for an object to be) are two constantly shifting paradigms in which design processes can intervene to help develop an architectural solution from a range of possibilities. The technical aspect of the project includes the collaborative workflow between the architecture offices of OTA+ and studio MODO with Arup Engineers to resolve structural issues using parametric modeling tools and structural analysis software. The final project is entirely parametric and fabrication is completely automated.
keywords Tschumi, Parametric, Installation, Generative, Projection
series other
type normal paper
email
last changed 2019/08/02 08:16

_id acadia17_146
id acadia17_146
authors Black, Conor; Forwood, Ed
year 2017
title Game Engine Computation for Serious Engineering: Visualisation and Analysis of Building Facade Movements as a Consequence of Loads on the Primary Structure
doi https://doi.org/10.52842/conf.acadia.2017.146
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 146-153
summary This paper demonstrates the innovative use of game engines as a tool in the analysis and communication of complex structural engineering. It specifically looks at the relationship between a building’s primary structure and its façade. The analysis and visualisations, scripted using the Game Engine Unity3D, focuses on visualising the implications of movements from the primary structure [under various load cases] on the façade. This paper describes the novel process by which Unity3D is utilised to create an applet which imports displacements from structural software and post-processes the data to visualise the complex effect on façade panels according to its support conditions. It demonstrates that visualising facade movements in real-time, as opposed to current, static report-based descriptions, provide access for the comprehension of more complex building systems. This therefore has the possibility to reduce safety factors applied to facade movement joints.
keywords design methods; information processing; game engines; fabrication; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_069
id ecaade2017_069
authors D'Uva, Domenico
year 2017
title Unfolding the design of architecture as a strategy to assess intellectual property - Bridle pirating architecture
doi https://doi.org/10.52842/conf.ecaade.2017.1.297
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 297-302
summary Modeling tools are evolving the process of architectural design from the use ordinary digital tool into a role of creator of complex shapes, through coding configurations. These procedures are becoming the structural ground of the architectural shape, going beyond their sole tools role. The increasing in importance of such codes implies a major level of awareness for their use, which is worth of a deeper analysis. The system of relations among parts in an architectural design picks a single configuration among infinite others, because it is produced by a design process which find its fulfillment in the final portray. Through the spreading of digital design tools, such final configuration becomes a step in a clearly reproducible process. The project is achieved through a series of starting conditions, which undergo a parametric process, that produces the final result. An identical parametric process can be applied under slightly different starting conditions and produce completely different results. These results are connected with the code which produced them, but is the authorship still property of the original author?
keywords Morphogenesis; Parametric; Authorship
series eCAADe
email
last changed 2022/06/07 07:56

_id cf2017_128
id cf2017_128
authors Dietrich, Sebastian; Schneider, Sven; Demin, Dimitry
year 2017
title RhinoRstab: Introducing and Testing a New Structural Analysis Plugin for Grasshopper3D
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 128-136.
summary This paper presents a new open-source structural analysis plugin for Grasshopper – RhinoRstab. The plugin bridges data between the worldwide established software: Rhinoceros3d and Dlubal RSTAB. The basic idea behind the approach is to create an interactive workflow between the architectural design on the one hand and a structural analysis tool on the other hand. In contrast to RhinoRstab, other analysis tools for Grasshopper predict the structural behaviour independent of its structural capacity. Thus, additional standalone software is necessary to verify the analysis of these plugins subsequently. To test the validity of this new tool, it is compared to a similar application, namely Karamba (a widely used structural analysis plugin for Rhinoceros/Grasshopper). Both tools are tested in different scenarios. The study shows that for some elements in a structural system and some calculation methods RhinoRstab and Karamba results differ strongly. However, regarding the runtime, Karamba operates faster than RhinoRstab.
keywords Automation, Structural Analysis, Structural Design, Optimization
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_056
id ecaade2017_056
authors Kontovourkis, Odysseas
year 2017
title Multi-objective design optimization and robotic fabrication towards sustainable construction - The example of a timber structure in actual scale
doi https://doi.org/10.52842/conf.ecaade.2017.1.337
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 337-346
summary This paper attempts to reconsider the role of advanced tools and their effective implementation in the field of Architecture, Engineering and Construction (AEC) through the concept of sustainable construction. In parallel, the paper aims to discuss and find common ground for communication between industrial and experimental processes guided by sustainable criteria, an area of investigation that is currently in the forefront of the research work conducted in our robotic construction laboratory. Within this frame, an ongoing work into the design, analysis and automated construction of a timber structure in actual scale is exemplified and used as a pilot study for further discussion. Specifically, the structure consists of superimposed layers of timber elements that are robotically cut and assembled together, formulating the overall structural system. In order to achieve a robust, reliable and economically feasible solution and to control the automated construction process, a multi-objective design optimization process using evolutionary principles is applied. Our purpose is to investigate possibilities for sustainable construction considering minimization of cost and material waste, and in parallel, discussing issues related to the environmental impact and the feasibility of solutions to be realized in actual scale.
keywords Multi-objective optimization; robotic fabrication; cost and material waste minimization; sustainable construction; timber structure
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2017_017
id caadria2017_017
authors Park, Hyejin, Lee, Seunghyun, Kim, Eonyong and Choo, Seungyeon
year 2017
title A Proposal for Building Safety Diagnosis Processes using BIM-based Reverse Engineering Technology
doi https://doi.org/10.52842/conf.caadria.2017.673
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 673-682
summary Recently, the aging of buildings is accelerating around the world. In line with this, architectural structures constructed long time ago require life extension and ongoing management and protection for improvement, because they are too deteriorated. In particular, since structural safety inspection and analysis in building is very important, 'DFS (Design For Safety)'system has been introduced and conducted at the national level in Korea for the whole building life cycle management system encompassing the entire design, work commencement, construction, and completion stages. However, we do not have a system ranging from repair and reinforcement work plans in doing safety design, structural inspection and analysis to ongoing safety inspection. Therefore, it is necessary to establish a system to produce and share integrated information and conduct a research to manage architectural structure across the whole life cycle. Accordingly, this study aims to propose BIM-based reverse engineering technology for generating a safety management model based on laser scanner, verify the investigation items to be utilized of the design when building safety, and seek ways to utilize them for safety design.
keywords BIM; reverse engineering; building safety diagnosis; laser scanning; design for safety
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia17_522
id acadia17_522
authors Sarafian, Joseph; Culver, Ronald; Lewis, Trevor S.
year 2017
title Robotic Formwork in the MARS Pavilion: Towards The Creation Of Programmable Matter
doi https://doi.org/10.52842/conf.acadia.2017.522
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 522- 533
summary The proliferation of parametric tools has allowed for the design of previously impossible geometry, but the construction industry has failed to keep pace. We demonstrate the use of industrial robots to disrupt the ancient process of casting concrete and create an adjustable formwork capable of generating various cast components based on digital input, crafting a new approach to “programmable matter.” The resulting research delineates a novel methodology to facilitate otherwise cost-prohibitive, even impossible design. The MARS Pavilion employs this methodology in a building-sized proof of concept where manipulating fabric with industrial robots achieves previously unattainable precision while casting numerous connective concrete components to form a demountable lattice structure. The pavilion is the result of parametric form finding, in which a catenary structure ensures that the loads are acting primarily in compression. Every concrete component is unique, yet can be assembled together with a 1/16-inch tolerance. Expanding Culver & Sarafian’s previous investigations, industrial robot arms are sent coordinates to position fabric sleeves into which concrete is poured, facilitating a rapid digital-to-physical casting process. With this fabrication method, parametric variation in design is cost-competitive relative to other iterative casting techniques. This digital breakthrough necessitated analogue material studies of rapid-setting, high-strength concrete and flexible, integral reinforcing systems. The uniquely shaped components are coupled with uniform connectors designed to attach three limbs of concrete, forming a highly stable, compressive hex-grid shell structure. A finite element analysis (FEA) was a critical step in the structural engineering process to simulate various load scenarios on the pavilion and drive the shape of the connective elements to their optimal form.
keywords material and construction; fabrication; form finding
series ACADIA
email
last changed 2022/06/07 07:57

_id ijac201715401
id ijac201715401
authors Yazar, Tugrul
year 2017
title Revisiting Parquet Deformations from a computational perspective: A novel method for design and analysis
source International Journal of Architectural Computing vol. 15 - no. 4, 250-267
summary Parquet Deformation is an architectural studio exercise introduced by William Huff in 1960s. It aims to improve students’ reasoning of spatiotemporal variation by utilizing sequential shapeshifting of patterns. This article examines the outcomes of this educational research from a perspective of design computing with a purpose to remark its pedagogical significance. A multilayered reading about the exercise will reveal its historical, theoretical, and artistic backgrounds. Then the common structural elements and different construction approaches are explained along with a novel design and analysis method. The proposed method embeds variations of two-dimensional pattern deformations on a third dimension. It enables various analyses such as the measurement of regularity and locating the attractor points. This study is expected to exemplify how computational thinking and new digital tools change the way designers would approach to such systematic compositions.
keywords Pattern, deformation, geometry, computation, education
series journal
email
last changed 2019/08/07 14:03

_id acadia17_28
id acadia17_28
authors Aguiar, Rita; Cardoso, Carmo; Leit?o,António
year 2017
title Algorithmic Design and Analysis Fusing Disciplines
doi https://doi.org/10.52842/conf.acadia.2017.028
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 28-37
summary In the past, there has been a rapid evolution in computational tools to represent and analyze architectural designs. Analysis tools can be used in all stages of the design process, but they are often only used in the final stages, where it might be too late to impact the design. This is due to the considerable time and effort typically needed to produce the analytical models required by the analysis tools. A possible solution would be to convert the digital architectural models into analytical ones, but unfortunately, this often results in errors and frequently the analytical models need to be built almost from scratch. These issues discourage architects from doing a performance-oriented exploration of their designs in the early stages of a project. To overcome these issues, we propose Algorithmic Design and Analysis, a method for analysis that is based on adapting and extending an algorithmic-based design representation so that the modeling operations can generate the elements of the analytical model containing solely the information required by the analysis tool. Using this method, the same algorithm that produces the digital architectural model can also automatically generate analytical models for different types of analysis. Using the proposed method, there is no information loss and architects do not need additional work to perform the analysis. This encourages architects to explore several design alternatives while taking into account the design’s performance. Moreover, when architects know the set of design variations they wish to analyze beforehand, they can easily automate the analysis process.
keywords design methods; information processing; simulation & optimization; BIM; generative system
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_085
id ecaade2017_085
authors Agustí-Juan, Isolda, Hollberg, Alexander and Habert, Guillaume
year 2017
title Integration of environmental criteria in early stages of digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2017.2.185
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 185-192
summary The construction sector is responsible for a big share of the global energy, resource demand and greenhouse gas emissions. As such, buildings and their designers are key players for carbon mitigation actions. Current research in digital fabrication is beginning to reveal its potential to improve the sustainability of the construction sector. To evaluate the environmental performance of buildings, life cycle assessment (LCA) is commonly employed. Recent research developments have successfully linked LCA to CAD and BIM tools for a faster evaluation of environmental impacts. However, these are only partially applicable to digital fabrication, because of differences in the design process. In contrast to conventional construction, in digital fabrication the geometry is the consequence of the definition of functional, structural and fabrication parameters during design. Therefore, this paper presents an LCA-based method for design-integrated environmental assessment of digitally fabricated building elements. The method is divided into four levels of detail following the degree of available information during the design process. Finally, the method is applied to the case study "Mesh Mould", a digitally fabricated complex concrete wall that does not require any formwork. The results prove the applicability of the method and highlight the environmental benefits digital fabrication can provide.
keywords Digital fabrication; Parametric LCA; Early design; Sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_199
id ecaade2017_199
authors Al-Douri, Ph.D., Firas
year 2017
title Computational and Modeling Tools - How effectively are Urban Designers and Planners using them Across the Design Development Process?
doi https://doi.org/10.52842/conf.ecaade.2017.1.409
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 409-418
summary Literature suggests that despite the increasing range and variety of computational tools and technologies, they have not really been employed for designing as extensively as it might be. This is due in part to the numerous challenges and impediments limiting their effective usage such as the methodological, procedural, and substantive factors and limitations, and skepticism about their impact of usage on the design process and outcome. The gap in our understanding of how advanced computational tools could support the design activities and design decision-making has expanded considerably to become a new area of inquiry with considerable room for the expansion of knowledge. This research is a single-case study that has been pursued in two phases: literature review and survey followed by analysis and discussion of the empirical results. The empirical observations were compared to the theoretical propositions and with results of similar research to highlight the areas and the extent to what the IT tools' usage have influenced the outcome of the design process. The comparison has helped highlight, explain, and justify the mechanism and improvements in the design outcome. Please write your abstract here by clicking this paragraph.
keywords Computational urban design; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_016
id sigradi2017_016
authors Alexandre da Silva, Geovany Jessé; Carlos Alejandro Nome, Lucy Donegan
year 2017
title Ferramentas de Projeto para análise da qualidade urbana: Relacionando forma, usos, densidade e configuração espacial na cidade de João Pessoa, Brasil. [Design tools to assess urban quality: Relating form, uses, density and spatial configuration in João Pessoa city, Brazil.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.123-129
summary This paper describes an experience in a Graduate course Architecture and Urbanism that used computational tools to analyze urban quality – considering form, uses, density and spatial configuration (based on visual and fields) – in different urban areas in the city of João Pessoa. Understanding that the city is a problem in organized complexity, different aspects condition the quality of use of spaces and reveal urban dynamics. Urban analysis aided by computational tools revealed successful in characterizing different problems and potentialities that can lay the foundation for interventions with more urban quality.
keywords Design computational tools; Study of urban form, uses and density; Urban space performance; Spatial configuration.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2017_034
id sigradi2017_034
authors Barrozo do Amaral Villares, Alexandre; Daniel de Carvalho Moreira
year 2017
title Python on the Landscape of Programming Tools for Design and Architectural Education
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.237-241
summary Currently most professional modeling and computer graphics software packages embed a scripting language. This is an early report on collecting data about software applications and coding tools geared towards the educational environment, preparing a listing for further evaluation and analysis of platforms. An increase in the adoption of Python as the embedded scripting syntax in many established tools can already be recognized, therefore the creation of educational materials on Python for design and architectural education merits further attention. Other insights on the educational potential of the available tools might be gained by advancing the data collection and evaluation work.
keywords Education; Design; Architecture; Programming; Python.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_148
id ecaade2017_148
authors Baseta, Efilena, Sollazzo, Aldo, Civetti, Laura, Velasco, Dolores and Garcia-Amorós, Jaume
year 2017
title Photoreactive wearable: A computer generated garment with embedded material knowledge - A computer generated garment with embedded material knowledge
doi https://doi.org/10.52842/conf.ecaade.2017.2.317
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 317-326
summary Driven by technology, this multidisciplinary research focuses on the implementation of a photomechanical material into a reactive wearable that aims to protect the body from the ultraviolet radiation deriving from the sun. In this framework, the wearable becomes an active, supplemental skin that not only protects the human body but also augments its functions, such as movement and respiration. The embedded knowledge enables the smart material to sense and exchange data with the environment in order to passively actuate a system that regulates the relation between the body and its surroundings in an attempt to maintain equilibrium. The design strategy is defined by 4 sequential steps: a) The definition of the technical problem, b) the analysis of the human body, c) the design of the reactive material system, as well as d) the digital simulations and the digital fabrication of the system. The aforementioned design strategies allow for accuracy as well as high performance optimization and predictability in such complex design tasks, enabling the creation of customized products, designed for individuals.
keywords smart materials; wearable technology; data driven design; reactive garment; digital fabrication; performance simulations
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_099
id ecaade2017_099
authors Bialkowski, Sebastian
year 2017
title tOpos - GPGPU Accelerated Structural Optimisation Utility for Architects
doi https://doi.org/10.52842/conf.ecaade.2017.1.679
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 679-688
summary The paper focuses on possibilities of already known engineering procedures such as Finite Element Method or Topology Optimisation for effective implementation in architectural design process. The existing attempts of complex engineering algorithms implementation, as a form finding approach will be discussed. By intersecting architectural form evaluation with engineering analysis complemented by optimisation algorithms, the new quality of contemporary architecture design process may appears.
keywords topology optimisation; design support tools; complex geometries; General Programming GPU
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_992522 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002