CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id ecaade2017_031
id ecaade2017_031
authors Castelo Branco, Renata and Leit?o, António
year 2017
title Integrated Algorithmic Design - A single-script approach for multiple design tasks
doi https://doi.org/10.52842/conf.ecaade.2017.1.729
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
summary Many great architectural endeavors today engage in a multi software approach, as each specialty involved needs a different software, and different task required from the architect, such as 3D modeling, analysis or rendering, also benefit from the use of different tools. Combining them in the same process is not always a successful endeavor. A more effective portability mechanism is needed, and Algorithmic Design (AD) has the potential to become one. This paper explores the advantages of the algorithmic approach to the design process, and proposes a methodology capable of integrating the different tools and paradigms currently used in architecture. The methodology is based on the development of a computer program that describes not only the intended model, but also additional tasks, such as the required analysis and rendering. It takes advantage of CAD, BIM and analysis tools, with little effort when it comes to the transition between them.
keywords Algorithmic Design; CAD; BIM; Analysis tools
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_069
id caadria2017_069
authors Dritsas, Stylianos, Chen, Lujie and Sass, Lawrence
year 2017
title Small 3D Printers / Large Scale Artifacts - Computation for Automated Spatial Lattice Design-to-Fabrication with Low Cost Linear Elements and 3D Printed Nodes
doi https://doi.org/10.52842/conf.caadria.2017.821
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 821-830
summary The presented process enables users to design, fabricate and assemble spatial lattices comprised of linear stock materials such as round section timber, aluminum or acrylic dowels and complex 3D printed joints. The motivation for the development of this application is informed by the incredible availability of low cost 3D printers which enable anyone to produce small scale artifacts; deploying rapid prototyping to achieve larger scale artifacts than the machine's effective work envelope is a challenge for additive manufacturing; and the trend in the design computing world away highly technical specialized software towards general public applications.
keywords Design Computation; Digital Fabrication; 3D Printing; Spatial Lattices; Design to Production
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2017_053
id ecaade2017_053
authors Gül, Leman Figen
year 2017
title Studying Architectural Massing Strategies in Co-design - Mobile Augmented Reality Tool versus 3D Virtual World
doi https://doi.org/10.52842/conf.ecaade.2017.2.703
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 703-710
summary Researchers attempt to offer new design tools and technologies to support design process facilitating alternative visualization and representation techniques. This paper describes a comparison study that took place in the Department of Architecture, at the Istanbul Technical University between 2016-2017. We compare when architects designed mass volumes of buildings in an marker-based mobile Augmented Reality (AR) application with that of when they used a collaborative 3D Virtual World. The massing strategy in the AR environment was an additive approach that is to collaboratively design the small parts to make the whole. Alignment and arrangement of the parts were not the main concerns of the designers in AR, instead the functional development of the design proposal, bodily engagements with the design representation, framing and re-framing of the given context and parameters become the discussion topics.
keywords Augmented reality, virtual world, massing strategies; protocol analysis
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
doi https://doi.org/10.52842/conf.caadria.2017.841
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id cf2017_022
id cf2017_022
authors Noel, Vernelle A. A.
year 2017
title From Costuming and Dancing Sculptures to Architecture: The Corporeal and Computational in Design and Fabrication of Lightweight Mobile Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 22-41.
summary This paper describes a new approach to designing and fabricating costuming and dancing sculptures and the potential application of this system at the architectural scale. I present a novel design system based on the movement, form, and spatial relation of characters and dancing sculptures in the Trinidad Carnival. I also present a system that produces lightweight mobile structures from 3D printed connections, lightweight rods, and textile. Through a detailed case study, a new dancing sculpture is designed, and a full-scale lightweight mobile structure at the architectural scale is fabricated. Fabrication of the lightweight structure is achieved using Digital Crafting and Crafting Fabrication approaches to wire-bending, which includes the early development of a digital fabrication program for rod elements. This work has potential implications for costuming and dancing sculptures; architecture; computational design; and craft practices.
keywords Lightweight Architectural Structures, Trinidad Carnival, Corporeal, Dancing Sculptures, Fabrication
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_38
id acadia17_38
authors Ahlquist, Sean; McGee, Wes; Sharmin, Shahida
year 2017
title PneumaKnit: Actuated Architectures Through Wale- and Course-Wise Tubular Knit-Constrained Pneumatic Systems
doi https://doi.org/10.52842/conf.acadia.2017.038
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 38-51
summary This research explores the development of seamless pneumatically actuated systems whose motion is controlled by the combination of differentially knitted textiles and standardized thin-walled silicone tubing. This work proposes a fundamental material strategy that addresses challenges ranging from soft robotics to pneumatic architecture. Research in soft robotics seeks to achieve complex motions through non-mechanical monolithic systems, comprised of highly articulated shapes molded with a combination of elastic and inelastic materials. Inflatables in architecture focus largely on the active structuring of static forms, as facade systems or as structured envelopes. An emerging use of pneumatic architecture proposes morphable, adaptive systems accomplished through differentiated mechanically interconnected components. In the research described in this paper, a wide array of capabilities in motion and geometric articulation are accomplished through the design of knitted sleeves that generate a series of actuated “elbows.” As opposed to molding silicone bladders, differentiation in motion is generated through the more facile ability of changing stitch structure, and shaping of the knitted textile sleeve, which constrains the standard silicone tubing. The relationship between knit differentiation, pneumatic pressure, and the resultant motion profile is studied initially with individual actuators, and ultimately in propositions for larger seamless assemblies. As opposed to a cellular study of individual components, this research proposes structures with multi-scalar articulation, from fiber and stitch to overall form, composed into seamless, massively deformable architectures.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_199
id ecaade2017_199
authors Al-Douri, Ph.D., Firas
year 2017
title Computational and Modeling Tools - How effectively are Urban Designers and Planners using them Across the Design Development Process?
doi https://doi.org/10.52842/conf.ecaade.2017.1.409
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 409-418
summary Literature suggests that despite the increasing range and variety of computational tools and technologies, they have not really been employed for designing as extensively as it might be. This is due in part to the numerous challenges and impediments limiting their effective usage such as the methodological, procedural, and substantive factors and limitations, and skepticism about their impact of usage on the design process and outcome. The gap in our understanding of how advanced computational tools could support the design activities and design decision-making has expanded considerably to become a new area of inquiry with considerable room for the expansion of knowledge. This research is a single-case study that has been pursued in two phases: literature review and survey followed by analysis and discussion of the empirical results. The empirical observations were compared to the theoretical propositions and with results of similar research to highlight the areas and the extent to what the IT tools' usage have influenced the outcome of the design process. The comparison has helped highlight, explain, and justify the mechanism and improvements in the design outcome. Please write your abstract here by clicking this paragraph.
keywords Computational urban design; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_110
id acadia17_110
authors Arnowitz, Ethan; Morse, Christopher; Greenberg, Donald P.
year 2017
title vSpline: Physical Design and the Perception of Scale in Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2017.110
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 110-117
summary Virtual reality provides a heightened sense of immersion and spatial awareness that provides a unique opportunity for designers to perceive and evaluate scale and space. At the same time, traditional sketches and small-size physical models provide tactile feedback that allow designers to create, comprehend, and explore complex geometric relationships. Through the development of vSpline, a modeling application for virtual reality, we explore the potential for design within a virtual spatial environment to blur the boundaries between digital and physical stages of design, and seek to combine the best of both virtual and analog worlds. By using spline-based closed meshes created directly in three-dimensional space, our software provides the capabilities to design, modify, and save the information in the virtual world and seamlessly convert the data to evaluate the printing of 3D physical models. We identify and discuss important questions that arise regarding relationships of perception of scale, digital-to-physical domains, and new methods of input and manipulation within a 3D immersive space.
keywords design methods; information processing; hci; vr; ar; mixed reality; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac201715101
id ijac201715101
authors Bieg, Kory and Clay Odom
year 2017
title Lumifoil and Tschumi: Virtual projections and architectural interventions
source International Journal of Architectural Computing vol. 15 - no. 1, 6-17
summary This article introduces the theoretical and technical framework for the design of a temporary rooftop canopy on the red generator—one of the buildings designed by Bernard Tschumi for the Florida International University School of Architecture. The project, Lumifoil, was designed using both top-down and bottom-up computational techniques, including surface modeling via projected geometries and scripted cellular subdivisions and assemblies. Lumifoil attempts to synthesize these two often-conflicting design approaches into a generative design process which leverages context, form, surface, and structure as affective and effective actors. Lumifoil is the result of a design methodology which is both active and reactive to existing conditions of the site and new opportunities afforded by the program. It is contextual in its top-down relationship to Tschumi’s existing building and theory, generative in how details emerge bottom-up through scripts which lack any reference to site, and emergent in the resulting synthetic processes and effects which are produced. Through this methodological development, the project both tracks and responds to popular architectural theory and design from the mid-1990s to today. The theoretical underpinnings of the project build upon the idea that the actual (the real-life physical manifestation of matter) and the virtual (the potential for an object to be) are two constantly shifting paradigms in which design processes can intervene to help develop an architectural solution from a range of possibilities. The technical aspect of the project includes the collaborative workflow between the architecture offices of OTA+ and studio MODO with Arup Engineers to resolve structural issues using parametric modeling tools and structural analysis software. The final project is entirely parametric and fabrication is completely automated.
keywords Tschumi, Parametric, Installation, Generative, Projection
series other
type normal paper
email
last changed 2019/08/02 08:16

_id sigradi2017_014
id sigradi2017_014
authors Bonilla Vallejo, Mario Andres; Denise Mônaco dos Santos, Douglas Lopes de Souza, Pena Martinez, Andressa Carmo
year 2017
title La práctica de la colaboración en los procesos digitales de diseño: Investigación - Acción [The practice of collaboration in digital processes design: Investigation action]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.106-113
summary This paper aims to present reflections on the practice of collaboration in the project JAM! Diálogos emergentes e processos digitais de projeto. For this, we analyzed the interaction and communication of a geographically distributed work team in Brazil, through a research - action methodology. Here be considered as main aspects the digital tools and technologies that support the development of remote architectural projects. Therefore, advances in the CSCW area taken into account for such analysis. This work linked to a master's research that be carry out at the Federal University of Viçosa
keywords Process design; Collaboration; Groupware; Collective intelligence.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2017_069
id sigradi2017_069
authors Briones Lazo, Carolina; Carolina Soto Ogueta
year 2017
title La enseñanza de BIM en Chile, el desafío de un cambio de enfoque centrado en la metodología por sobre la tecnología. [BIM education in Chile, the challenge of a shift of focus centered on methodology over technology.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.470-478
summary This article presents the level of adoption of BIM in Chile referring to recent studies carried out in the country, demonstrating that there has not been a significant increase in the use of this methodology by the industry. According to the analysis of international cases on educational frameworks, the authors argue that the development of a national education strategy for BIM with a focus on defining BIM capabilities required to assume the national mandate 2020, along with promoting collaborative work environments and active learning methodologies would be very beneficial.
keywords Building Information Modelling; Metodología BIM; Adopción de BIM; Estrategia de enseñanza de BIM.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2017_031
id sigradi2017_031
authors Chaves Galvão, Carolina M.; Fernando Galvão, Eliton Siqueira
year 2017
title Patrimônio (Moderno) Digital como ação resiliente [Digital (Modern) Heritage as resilience action]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.219-222
summary The Modern Heritage in Aracaju is still a little researched subject and the available works need to be reviewed and expanded. This paper presents the first results of a work dedicated to the analysis and registration of the Modern Heritage as a resilient action to the losses suffered, so that this heritage will resist in time and persist in the memory, enabling future research and conservation actions. The case study was the Hora Oliveira residence, which was modeled using Revit © from the development of a template, in which information about original materials and pathologies present in the building were inserted.
keywords Digital heritage; Modern Architecture; Aracaju; Hora Oliveira residence.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2017_042
id caadria2017_042
authors Coorey, Ben and Coorey, Anycie
year 2017
title Generating Urban Form
doi https://doi.org/10.52842/conf.caadria.2017.261
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 261-269
summary Modern design of urban forms is venturing towards performative, site-specific architecture that are formed according to the attributes of its urban context. Parametric modelling techniques offer designers the ability to embed generative mechanisms into the design process to allow performance based design. This paper focuses on the development of a synthesis model that generates an Urban Form schema using computational design principles. The design system illustrates a rule-based systematic approach to urban form generation and is a precursor to the automatic exploration of urban forms based on design analytics and evaluation of urban metrics. The role of the architect begins to shift from the designer of objects to the designer of processes with urban planning following a trajectory of data-generated and contextual specific design.
keywords Parametric Modelling; Urban Modelling; Scripting; Urban Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_002
id ecaade2017_002
authors Costa, Fábio, Eloy, Sara, Sales Dias, Miguel and Lopes, Mariana
year 2017
title ARch4models - A tool to augment physical scale models
doi https://doi.org/10.52842/conf.ecaade.2017.1.711
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 711-718
summary This paper focus on the development and evaluation of a computer tool that enriches physical scale models of buildings, which are commonly used during architecture and civil engineering design processes. The main goal of this work is to enable designers, namely architects, to use the affordances of the physical scale models, by enhancing them with digital characteristics that can be easily changed, allowing an enriched interaction of the designer with such models. Our in-house developed Augmented Reality tool, referred to as ARch4models, augments the user experience with visual features and interactive capabilities, not possible to accomplish with physical models (see this video in https://goo.gl/5zbdTQ). The tool allows the coherent registration between the real and the digital in the same space. Satisfaction evaluation studies were conducted that have shown that ARch4models improves the building design process when compared with a traditional methodology employing solely physical scale models.
keywords augmented reality; architecture; physical scale model; 3D model; AEC design process
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
doi https://doi.org/10.52842/conf.acadia.2017.212
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_290
id ecaade2017_290
authors Di Giuda, Giuseppe Martino, Villa, Valentina, Ciribini, Angelo Luigi Camillo and Tagliabue, Lavinia Chiara
year 2017
title Theory of Games and Contracts to define the Client role in Building Information Modeling
doi https://doi.org/10.52842/conf.ecaade.2017.1.161
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 161-168
summary This research focus on the application of Theory of Games and asymmetry information to the AEC sector underling the impact of these theories to the supply chain and in particular on the evolution of the client role in a Building Information Modeling process. The mentioned theories used to be applied to macroeconomic fields, but allowed the researchers to understand the evolution of the sector and the internal behavior of the team. This analysis of team behaviors permits to grasp how the contractual frame could hold up the natural trend of the market to collaborate, which leads the sector to improve itself. The Theory of Games could be adopted as a hermeneutic tool for understanding actions and agreements to which the various parties achieve. The research provided a global analysis on the evolution of the client role in a cyclical process. Further development of the research will be the application of the theory to a real case study to catch the real team behavior in a collaborative environment.
keywords Building Information Modeling; game theory; contracts theory; hermeneutical approach
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_044
id ecaade2017_044
authors Fernando, Shayani, Reinhardt, Dagmar and Weir, Simon
year 2017
title Simulating Self Supporting Structures - A Comparison study of Interlocking Wave Jointed Geometry using Finite Element and Physical Modelling Methods
doi https://doi.org/10.52842/conf.ecaade.2017.2.177
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 177-184
summary Self-supporting modular block systems of stone or masonry architecture are amongst ancient building techniques that survived unchanged for centuries. The control over geometry and structural performance of arches, domes and vaults continues to be exemplary and structural integrity is analysed through analogue and virtual simulation methods. With the advancement of computational tools and software development, finite and discrete element modeling have become efficient practices for analysing aspects for economy, tolerances and safety of stone masonry structures. This paper compares methods of structural simulation and analysis of an arch based on an interlocking wave joint assembly. As an extension of standard planar brick or stone modules, two specific geometry variations of catenary and sinusoidal curvature are investigated and simulated in a comparison of physical compression tests and finite element analysis methods. This is in order to test the stress performance and resilience provided by three-dimensional joints respectively through their capacity to resist vertical compression, as well as torsion and shear forces. The research reports on the threshold for maximum sinusoidal curvature evidenced by structural failure in physical modelling methods and finite element analysis.
keywords Mortar-less; Interlocking; Structures; Finite Element Modelling; Models
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaaderis2018_120
id ecaaderis2018_120
authors Georgiou, Odysseas and Georgiou, Michail
year 2018
title ZEBRA | COMPUTING MOIRE ANIMATIONS
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 49-56
keywords This paper documents the development and application of a set of computational tools under the name ZEBRA to support and facilitate the design, simulation and realization of two and three-dimensional moiré animation installation. Additionally to traditional two-dimensional moiré animations, the authors implemented the above tools to examine a novel approach which combines the depth of field and motion of the spectator to achieve a large-scale, analogue animation effect in three dimensions. The tools were established to aid the design of an interactive sculptural installation for a memorial in Cyprus which was completed in March 2017. ZEBRA is currently in beta testing and will be launched as a plugin for Grasshopper 3D in the near future.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2017_037
id ecaade2017_037
authors Hassan Khalil, Mohamed
year 2017
title Learning by Merging 3D Modeling for CAAD with the Interactive Applications - Bearing walls, Vaults, Domes as Case study
doi https://doi.org/10.52842/conf.ecaade.2017.1.353
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 353-362
summary The development and the innovation of tools, techniques and digital applications represent a challenge for those who are in charge of architectural education to keep up with this development. This is because these techniques provide potentials that are not available in the traditional method of teaching. This raises an important question: can these tools and techniques help to achieve the targeted outcomes of education? This research paper discusses how to integrate both digital 3D models, of CAAD, and interactive applications for the development of architectural education curriculum. To test this, a case study has been conducted on the subject of building construction, for the second year at the faculty of engineering, specifically, the bearing walls construction system. In addition, this study has been divided into three parts. Through the first part, the scientific content of the curriculum, which tackles the bearing walls, has been prepared. The second part shows how to convert the scientific content into an interactive content in which the students learn through the experiment and the simulation of the traditional construction methods as the students a acquire construction skills and the ability to imagine different structural complexities. The third part includes the creation of both the application and the software containing the interactive curriculum. Workshop for the students has been held as a case study to test the effectiveness of this development and to recognize the pros and cons. The results confirmed the importance of integrating this applications into architectural education.
keywords CAAD; 3D modeling ; Building Construction; Interactive applications; Bearing walls systems
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2017_001
id caadria2017_001
authors He, Yi, Schnabel, Marc Aurel, Chen, Rong and Wang, Ning
year 2017
title A Parametric Analysis Process for Daylight Illuminance - The Influence of Perforated Facade Panels on the Indoor Illuminance
doi https://doi.org/10.52842/conf.caadria.2017.417
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 417-424
summary BIM modelling systems and graph-based modelling systems have been widely used in the architecture design process recently. Based on the systems, an alternative approach to study the influence of perforated façade panels on the indoor illuminance by using a parametric performance analysis in a practical architectural project is proposed. The workflow we developed makes the modelling process faster, more accurate, and easier to modify. From the circulation of modelling-to-analysis process, the performance can be compared, feedback can be generated. Accordingly, optimized design can be concluded. This study suggests an analysis method to evaluate the indoor illuminance performance in the early design stages. The simulation is not a conventional typical in-depth one, but a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Moreover, the first generation of digital modeling programs allow designers to conceive new forms, and allow these forms to be controled and realized. It reacts to the conference theme by presenting a protocol for a digital workflow in the early stage of the design development.
keywords Daylight illuminance; BIM; parametric sustainability; parametric modelling; facade panels
series CAADRIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_263621 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002