CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 17 of 17

_id ecaade2017_101
id ecaade2017_101
authors Ayoub, Mohammed and Wissa, Magdi
year 2017
title Daylight Optimization - A Parametric Study of Urban Façades Design within Hybrid Settlements in Hot-Desert Climate
doi https://doi.org/10.52842/conf.ecaade.2017.2.193
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 193-202
summary Unprecedented growth of hybrid settlements causes deterioration to the indoor environmental quality. Due to their narrow street-networks and fully packed urban fabric, lower floors are subjected to severe overshadow condition, which has adverse effects on the health of the inhabitants. This paper aims to investigate techniques to mitigate the under-lit indoor environment for a group of buildings with variable heights and orientations, with regard to the urban façades parameters. It reflects an intervention in an existing hybrid settlements, within hot-desert climate, to alter façades configurations for daylight optimization, and ultimately recover the lost indoor quality of users in such contexts.
keywords Daylight Optimization; Urban Façade; Simulation; Hybrid Settlements ; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_164
id acadia17_164
authors Brugnaro, Giulio; Hanna, Sean
year 2017
title Adaptive Robotic Training Methods for Subtractive Manufacturing
doi https://doi.org/10.52842/conf.acadia.2017.164
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 164-169
summary This paper presents the initial developments of a method to train an adaptive robotic system for subtractive manufacturing with timber, based on sensor feedback, machine-learning procedures and material explorations. The methods were evaluated in a series of tests where the trained networks were successfully used to predict fabrication parameters for simple cutting operations with chisels and gouges. The results suggest potential benefits for non-standard fabrication methods and a more effective use of material affordances.
keywords design methods; information processing; construction; robotics; ai & machine learning; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_041
id ecaade2017_041
authors Fukuda, Tomohiro, Kuwamuro, Yasuyuki and Yabuki, Nobuyoshi
year 2017
title Optical Integrity of Diminished Reality Using Deep Learning
doi https://doi.org/10.52842/conf.ecaade.2017.1.241
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 241-250
summary A new method is proposed to improve diminished reality (DR) simulations to allow the demolition and removal of entire buildings in large-scale spaces. Our research goal was to obtain optical integrity by using a scientific and reliable simulation approach. Further, we tackled presumption of the texture of the background sky by applying deep learning. Our approach extracted the background sky using information from the actual sky obtained from a photographed image. This method comprised two steps: (1) detection of the sky area from the image through image segmentation and (2) creation of an image of the sky through image inpainting. The deep convolutional neural networks developed by us to train and predict images were evaluated to be feasible and effective.
keywords Diminished Reality; Optical Integrity; Deep Learning; Augmented Reality; Landscape assessment
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_105
id caadria2017_105
authors Janssen, Patrick
year 2017
title Evolutionary Urbanism - Exploring Form-based Codes Using Neuroevolution Algorithms
doi https://doi.org/10.52842/conf.caadria.2017.303
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 303-312
summary Form-Based Codes are legal regulations adopted by local government that allow specific urban forms to be achieved. Such codes have a significant impact on the performative potential of the urban environment. This paper explores the possibility of using a neuroevolution algorithm to elucidate the complex relationship between Form-based Codes and their performative potential. More specifically, Compositional Pattern Producing Networks (CPPN) are used to generate parameter fields, which then drive the generation of varied urban models. For evolving the CPPN networks, a neuroevolution algorithm is used, called Neuroevolution of Augmenting Topologies (NEAT). In order to test the feasibility of the proposed approach, an abstract experiment is described in which a population of urban models are evolved, optimising a set of performance criteria related to the vista and location of the residential units.
keywords Form-based codes; evolutionary design; neural networks; neuroevolution; urban planning
series CAADRIA
email
last changed 2022/06/07 07:52

_id lasg_whitepapers_2019_133
id lasg_whitepapers_2019_133
authors Ji, Haru Hyunkyung; and Graham Wakefield
year 2019
title Selected Artificial Natures, 2017-2018
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.133 - 142
summary Artificial Nature is a research-creation collaboration co-founded by Haru Hyunkyung Ji and Graham Wakefield in 2007. It has led to a decade of immersive installations in which the invitation is to become part of an alien ecosystem rich in feedback networks.1 Here we present four recent works in this series between 2017 and 2018.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ijac201715102
id ijac201715102
authors Klemmt, Christoph and Klaus Bollinger
year 2017
title Angiogenesis as a model for the generation of load-bearing networks
source International Journal of Architectural Computing vol. 15 - no. 1, 18-36
summary This research suggests an algorithm to generate structural networks based on discreet elements for given locations of support points and point loads. Previous research attempted to achieve this by using a computational growth simulation of venation systems, which form the structure of leaves. However, such networks always start from a single point and therefore cannot be used to form arches or beams. In order to generate networks that are based on two or three support points, an algorithm has been developed that is inspired instead by angiogenesis, the process by which vascular systems develop. The algorithm is based on a spring system with a variable network graph that connects the support points and is pulled upwards and split sideways into multiple veins by a given set of load points. The algorithm has been used to grow architectural structures. Different networks have been tested using finite element analysis and compared with both venation and column-and-beam structures. The angiogenesis networks as well as the venation network are shown to perform well and may be suitable as architectural structural systems.
keywords Architecture, angiogenesis, structure, network, growth
series other
type normal paper
email
last changed 2019/08/02 08:25

_id cf2017_110
id cf2017_110
authors Koenig, Reinhard; Miao, Yufan; Knecht, Katja; Bus, Peter; Mei-Chih, Chang
year 2017
title Interactive Urban Synthesis: Computational Methods for Fast Prototyping of Urban Design Proposals
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 110.
summary In this paper, we present a method for generating fast conceptual urban design prototypes. We synthesize spatial configurations for street networks, parcels and building volumes. Therefore, we address the problem of implementing custom data structures for these configurations and how the generation process can be controlled and parameterized. We exemplify our method by the development of new components for Grasshopper/Rhino3D and their application in the scope of selected case studies. By means of these components, we show use case applications of the synthesis algorithms. In the conclusion, we reflect on the advantages of being able to generate fast urban design prototypes, but we also discuss the disadvantages of the concept and the usage of Grasshopper as a user interface.
keywords Procedural grammars, Artificial intelligence in design, Urban synthesis, Generative design, Grasshopper plugin, Cognitive design computing
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2017_063
id caadria2017_063
authors Ma, Yidong and Xu, Weiguo
year 2017
title Physarealm - A Bio-inspired Stigmergic Algorithm Tool for Form-Finding
doi https://doi.org/10.52842/conf.caadria.2017.499
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 499-508
summary Physarum Polycephalum is a widespread eukaryotic microbe capable of producing effective networks between food particles to solve spatial planning problems. This paper investigates a previous algorithm for simulating Physarum Polycephalum. An open-source tool named Physarealm is developed for simulation in Rhino's graphical algorithm editor, Grasshopper. The tool adopts a previous stigmergic multi-agent algorithm for simulation and expands its boundary into three dimensions. In addition, this tool adds some custom rules, thus giving the designer more creative control over the produced results. Two research projects have applied this tool in the design process. The first project mainly takes advantage of the tool's path-planning ability, while the second one utilizes its aesthetic values, demonstrating the potential of the tool for further applications.
keywords stigmergy; multi-agent systems; form finding; computation; biomimicry
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac201715105
id ijac201715105
authors Nahmad Vazque, Alicia and Wassim Jabi
year 2017
title Investigations in robotic-assisted design: Strategies for symbiotic agencies in material-directed generative design processes
source International Journal of Architectural Computing vol. 15 - no. 1, 70-86
summary The research described in this article utilises a phase-changing material, three-dimensional scanning technologies and a six-axis industrial robotic arms as vehicles to enable a novel framework where robotic technology is utilised as an ‘amplifier’ of the design process to realise geometries that derive from both constructive visions and architectural visions through iterative feedback loops between them. The robot in this scenario is not a fabrication tool but the enabler of an environment where the material, robotic and human agencies interact. This article describes the exploratory research for the development of a dialogic design process, sets the framework for its implementation, carries out an evaluation based on designer use and concludes with a set of observations. One of the main findings of this article is that a deeper collaboration that acknowledges the potential of these tools, in a learning-by-design method, can lead to new choreographies for architectural design and fabrication.
keywords Robotic fabrication, human-machine networks, digital design, agency
series other
type normal paper
email
last changed 2019/08/02 08:28

_id ecaade2017_271
id ecaade2017_271
authors Narahara, Taro
year 2017
title Collective Construction Modeling and Machine Learning: Potential for Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2017.2.341
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 341-348
summary Recently, there are significant developments in artificial intelligence using advanced machine learning algorithms such as deep neural networks. These new methods can defeat human expert players in strategy-based board games such as Go and video games such as Breakout. This paper suggests a way to incorporate such advanced computing methods into architectural design through introducing a simple conceptual design project inspired by computational interpretations of wasps' collective constructions. At this stage, the paper's intent is not to introduce a practical and fully finished tool directly useful for architectural design. Instead, the paper proposes an example of a program that can potentially become a conceptual framework for incorporating such advanced methods into architectural design.
keywords Design tools; Stigmergy; Machine learning
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2017_269
id ecaade2017_269
authors Rahmani Asl, Mohammad, Das, Subhajit, Tsai, Barry, Molloy, Ian and Hauck, Anthony
year 2017
title Energy Model Machine (EMM) - Instant Building Energy Prediction using Machine Learning
doi https://doi.org/10.52842/conf.ecaade.2017.2.277
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 277-286
summary In the process of building design, energy performance is often simulated using physical principles of thermodynamics and energy behaviour using elaborate simulation tools. However, energy simulation is computationally expensive and time consuming process. These drawbacks limit opportunities for design space exploration and prevent interactive design which results in environmentally inefficient buildings. In this paper we propose Energy Model Machine (EMM) as a general and flexible approximation model for instant energy performance prediction using machine learning (ML) algorithms to facilitate design space exploration in building design process. EMM can easily be added to design tools and provide instant feedback for real-time design iterations. To demonstrate its applicability, EMM is used to estimate energy performance of a medium size office building during the design space exploration in widely used parametrically design tool as a case study. The results of this study support the feasibility of using machine learning approaches to estimate energy performance for design exploration and optimization workflows to achieve high performance buildings.
keywords Machine Learning; Artificial Neural Networks; Boosted Decision Tree; Building Energy Performance; Parametric Modeling and Design; Building Performance Optimization
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_552
id acadia17_552
authors Sjoberg, Christian; Beorkrem, Christopher; Ellinger, Jefferson
year 2017
title Emergent Syntax: Machine Learning for the Curation of Design Solution Space
doi https://doi.org/10.52842/conf.acadia.2017.552
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 552- 561
summary The expanding role of computational models in the process of design is producing exponential growth in parameter spaces. As designers, we must create and implement new methods for searching these parameter spaces, considering not only quantitative optimization metrics but also qualitative features. This paper proposes a methodology that leverages the pattern modeling properties of artificial neural networks to capture designers' inexplicit selection criteria and create user-selection-based fitness functions for a genetic solver. Through emulation of learned selection patterns, fitness functions based on trained networks provide a method for qualitative evaluation of designs in the context of a given population. The application of genetic solvers for the generation of new populations based on the trained network selections creates emergent high-density clusters in the parameter space, allowing for the identification of solutions that satisfy the designer’s inexplicit criteria. The results of an initial user study show that even with small numbers of training objects, a search tool with this configuration can begin to emulate the design criteria of the user who trained it.
keywords design methods; information processing; AI; machine learning; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_202
id ecaade2017_202
authors Sollazzo, Aldo, Trento, Armando and Baseta, Efilena
year 2017
title Machinic Agency - Implementing aerial robotics and machine learning to map public space
doi https://doi.org/10.52842/conf.ecaade.2017.2.611
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 611-618
summary The research presented in this paper is focused on proposing a new digital workflow, involving unmanned aerial vehicles (UAV) and machines learning systems, in order to detect and map citizen's behaviors in the context of public spaces.Novel machinic abilities can be implemented in the understanding of the human context, decoding, through computer visions and machine learning, complex systems into intelligible outputs (Olson, 2008), mapping the relationships of our reality. In this framework, robotic and computational strategies can be implemented in order to offer a new description of public spaces, bringing to light the hidden forces and multiple layers constituting the urban habitat. The presented study focuses on the development of a methodology turning video frames collected from cameras installed on drones into large datasets used to train convolutional networks and enable machines learning systems to detect and map pedestrians in public spaces.
keywords mapping; drones; machine learning; computer vision; city
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia17_572
id acadia17_572
authors Sparrman, Bjorn; Matthews, Chris; Kernizan, Schendy; Chadwick, Aran; Thomas, Neil; Laucks, Jared; Tibbits, Skylar
year 2017
title Large-Scale Lightweight Transformable Structures
doi https://doi.org/10.52842/conf.acadia.2017.572
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 572- 581
summary This paper presents strategies for the creation of large-scale transformable structures. In particular we work to leverage material properties and novel construction techniques to induce transformation. We employ flexible biaxial braided geometries to create interconnected large-scale textile surfaces. These braided networks distribute load forces via their internal friction, allowing for uniform structural transformation without the need for complicated mechanical linkages or electromechanical actuation. The ultimate range of these structures has been simulated with computational tools and correlated with physical load testing. We present various applications and configurations of these transforming structures that demonstrate their utility and a new attitude toward the creation of lightweight morphable structures.
keywords material and construction; simulation & optimization; fabrication; form finding
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
doi https://doi.org/10.52842/conf.acadia.2019.392
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2017_080
id caadria2017_080
authors Suzuki, Seiichi and Knippers, Jan
year 2017
title Topology-driven Form-finding - Implementation of an Evolving Network Model for Extending Design Spaces in Dynamic Relaxation
doi https://doi.org/10.52842/conf.caadria.2017.489
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 489-498
summary This paper introduces a novel computational design methodology called topology-driven for the numerical form-finding of discrete networks and presents the essential building block for storing and processing information. Numerical form-finding focuses on computing the optimum geometric configuration of lightweight structures in which shape is the result of reciprocal dependencies between forces, material behaviors and structural performances. Among the design community, Dynamic Relaxation (DR) has gained in popularity given its capacity to support more flexible and interactive design spaces in form-finding. However, common implementations of networks models only focus on the interactive exploration of material and geometrical properties without further specification for topological dynamization. For facing this problematic, we propose an object-oriented approach to attach specific functionalities to particular pieces of data within the numerical schema. Here, we describe the implementation of a rule-based system for managing objects´ interactions in order to continuously track topological and geometrical changes. Based on this concept, larger design spaces can be developed for the interactive exploration of structural shapes.
keywords Topology-driven; Form-Finding; Dynamic Relaxation; Object Structures; Design Spaces
series CAADRIA
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_120064 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002