CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
doi https://doi.org/10.52842/conf.acadia.2017.018
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_208
id ecaade2017_208
authors Beaudry Marchand, Emmanuel, Han, Xueying and Dorta, Tomás
year 2017
title Immersive retrospection by video-photogrammetry - UX assessment tool of interactions in museums, a case study
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
doi https://doi.org/10.52842/conf.ecaade.2017.2.729
summary Studying interactions in museums often omits to consider the complexity of the space and the visitors' behaviors. Visitors' walking paths do not provide enough insight of their user experience (UX) since they are distant from the experiential realities. Videogrammetry can convey such dimensions of an environmental experience. Because of limitations of real-time playback, a twofold approach is suggested: "immersive videos" combined with "photogrammetric models". A granular optimal experience assessment method using retrospection interviews is also applied providing a finer evaluation of the perceived experience through time. This method permits to characterize museum interactive installations, according to the perceived challenges and skills of the interaction's task, based this time on immersive retrospection. This paper proposes the "Immersive retrospection" by "Immersive video-photogrammetry" as a UX assessment tool of interactions in museums. A hybrid virtual environment was used in this study, allowing social VR without the use of headsets, through a life-sized projection of interactive 3D content. The study showed that Immersive video-photogrammetry facilitates the recall of memories and allows a deepened self-observation analysis.
keywords immersive retrospection; photogrammetry; videogrammetry; UX assessment; museum environments
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201715302
id ijac201715302
authors Borges de Vasconselo, Tássias and David Sperling
year 2017
title From representational to parametric and algorithmic interactions: A panorama of Digital Architectural Design teaching in Latin America
source International Journal of Architectural Computing vol. 15 - no. 3, 215-229
summary This study focuses on the context of graphic representation technologies and digital design on Architectural teaching in Latin America. From categories proposed by Oxman and Kotnik and through a mapping study framed by a systematic review in CumInCAD database, it is presented a panorama of the state-of-art of the digital design on Architectural teaching in the region, between 2006 and 2015. The results suggest a context of coexistence of representational interaction and parametric interaction, as well as a transition from one to another and the emergence of the first experiments in algorithmic interaction. As this mapping shows an ongoing movement toward Digital Architectural Design in Latin America in the last decade, and points out its dynamics in space in time, it could contribute to strengthen a crowdthinking network on this issue in the region and with other continents.
keywords Computer-aided architectural design, Digital Architectural Design teaching, interaction with digital media, levels of design computability, Latin America, mapping study
series journal
email
last changed 2019/08/07 14:03

_id ecaade2017_061
id ecaade2017_061
authors Castellari, Dario and Erioli, Alessio
year 2017
title Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 661-670
doi https://doi.org/10.52842/conf.ecaade.2017.1.661
summary Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.
keywords tectonics; combinatorics; unit-based system; branching network
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2018.2.545
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_260
id acadia17_260
authors Goldman, Melissa; Myers, Carolina
year 2017
title Freezing the Field: Robotic Extrusion Techniques Using Magnetic Fields
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 260-265
doi https://doi.org/10.52842/conf.acadia.2017.260
summary The introduction of robotics into the field of 3D printing allows designers and fabricators to truly print in three dimensions, focusing more on the volumetric properties of the extrusion rather than two-dimensional slicing and, furthermore, introducing forces that can defy gravity. This paper introduces a new method of robotic extrusion using magnetic fields to construct ferrostructures. Using a custom tool and ferromagnetic material, the research develops a construction process utilizing the off-plane toolpaths of a 6-axis industrial robotic arm to pull, attract, and repel material into a hardened structure. The ferromagnetic liquid forms spikes and connections around the invisible magnetic fields, and upon hardening, freezes the field into a new physical artifact. This extrusion process allows a fabrication that defies gravity. The robotic fabrication process allows microextrusions to build off of one another, scaling the result to approach an architectural scale and bringing a new freedom to the designer and the fabricator.
keywords material and construction; fabrication; construction/robotics
series ACADIA
email
last changed 2022/06/07 07:51

_id cf2017_045
id cf2017_045
authors Gün, Onur Yüce
year 2017
title Computing with Watercolor Shapes: Developing and Analyzing Visual Styles
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 45.
summary Computers help run visually creative processes, yet they remain visually, sensually and tactually distant [1]. This research introduces a drawing and painting process that infuses digital and analog ways of visual-making [2]. It implements a computationally broadened workflow for hand-drawing and painting, and develops a custom drawing apparatus. Primary goal is to develop a computationally generative painting system while retaining embodied actions and tactile material interactions that are intrinsic to the processes of handdrawing and watercolor painting. A non-symbolic, open-ended and trace-based shape calculation system emerges.
keywords Shape, Computing, Painting, Embodied, Watercolor
series CAAD Futures
email
last changed 2017/12/01 14:37

_id sigradi2017_082
id sigradi2017_082
authors Itao Palos, Karine; Gisela Belluzzo de Campos
year 2017
title A resiliência na tipografia digital: Interações propiciadas por programas generativos [Resilience in digital typography: Interactions provided by generative programs]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.568-574
summary This article aims to describe the ephemeral qualities that typography acquires in the digital context, caused by the polyvalence of the algorithmic code, which, from generative programming, allows the user to interact with the typographic object. These reflection are realized through the study of four projects: “Lettree” (2004), “Pyrographie” (2005), “Falling in Love” (2016) and “He liked Thick Word Soup” (2014). The observations were made by drawing a comparison between the concept of “matter” in the computational scenario proposed by the design philosopher Vilém Flusser (2015) and the quality of “fluidity” observed in the images created by digital generative programs.
keywords Typography; Interaction; Generative Systems; Design; Resilience.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia17_318
id acadia17_318
authors Khan, Sumbul; Tunçer, Bige
year 2017
title Intuitive and Effective Gestures for Conceptual Architectural Design: An Analysis Of User Elicited Hand Gestures For 3D CAD Modeling
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 318- 323
doi https://doi.org/10.52842/conf.acadia.2017.318
summary Gesture-based natural interfaces necessitate research into gestures that are intuitive for designers and effective for natural interaction. Intuitive knowledge is significant for conceptual design as it reduces time taken to complete tasks and improves usability of products. In a previously conducted experiment, we elicited gestures for 3D CAD modeling tasks for conceptual architectural design. In this study, we present a preliminary analysis of intuitiveness scores of gestures and evaluators’ ratings to analyze which gestures were more intuitive and effective for CAD manipulation tasks. Results show that gestures with high intuitive scores were not necessarily rated as effective by evaluators and that bimanual symmetric gestures consistently scored high for both intuitiveness and effectiveness. Based on our findings we give recommendations for the design of gesture-based CAD modeling systems for single and multiple users.
keywords design methods; information processing; HCI; collaboration; art and technology
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
doi https://doi.org/10.52842/conf.acadia.2017.330
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_265
id ecaade2017_265
authors Motalebi, Nasim and Duarte, José Pinto
year 2017
title A Shape Grammar of Emotional Postures - An approach towards encoding the analogue qualities of bodily expressions of emotions
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-492
doi https://doi.org/10.52842/conf.ecaade.2017.2.485
summary This paper is concerned with the translation of analogue qualities of human emotions into digital readings. Human body postures are considered as one of the main behavioral conduits for non-verbal communication and emotional expressions (Shan et.al., 2007). This research is the first step towards identifying and detecting emotions through posture analysis of users moving through space; leading towards generating real time responses in the form of spatial configurations to users' emotions. Such spatial configurations would then help inhabitants reach certain emotional states that would enhance their life quality. In order to achieve this goal, we propose a methodology for developing a comprehensive shape grammar algorithm that could evaluate and predict bodily expressions of emotions. The importance of this study lies under the embodied interactions (Streech et.al., 2011) in space. As the circumfixed space impacts the embodied mind, the body impacts its surrounding including the architectural space.
keywords Shape Grammar; Computation; Emotion; Posture; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2017_111
id ecaade2017_111
authors Odom, Clay
year 2017
title Articulate Objects - hard processes and soft effects
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 97-106
doi https://doi.org/10.52842/conf.ecaade.2017.2.097
summary If the design of environments and experiences has become a key concern for many contemporary designers and artists, then what is the medium that becomes most prevalent? Light. Although elusive (one might even say 'withdrawn') and transitory, light can be seen as both objective and subjective content that is being explored by contemporary artists, designers, and architects. , In addition, the very ephemeral quality of human experience means that light (although it is a condition which is made visible, objectified and transformed through its interactions with form and surface) is often, and strangely, disassociated from objective criteria. This paper uses two recently completed projects to outline an approach to overcoming tendency to separate the objective and subjective. It describes an approach which is positioned within contemporary theory and explored through processes, methods and outcomes. The work outlined explores how effects are theorized and instrumentalized through design processes not only as subjective or 'soft', effective, atmospheric conditions, but as affective drivers of objective or 'hard' processes.
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_161
id ecaade2017_161
authors Pietri, Samuel and Erioli, Alessio
year 2017
title Fibrous Aerial Robotics - Study of spiderweb strategies for the design of architectural envelopes using swarms of drones and inflatable formworks
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 689-698
doi https://doi.org/10.52842/conf.ecaade.2017.1.689
summary This thesis research presents an integrated workflow for the design and fabrication of large-scale architectural envelopes using swarms of drones and inflatable structures as formworks. The work lies at the intersection of architecture, biology and robotics, incorporating generative design with digital fabrication techniques. The proposed approach aims to investigate the tectonic potential of computational systems which encode behavioral strategies inside an agent-based model. It is from local interactions taking place at the micro-scale of complex systems that a new set of architectural tendencies seem to emerge. The authors focused on the strategies developed by colonies of social spiders during the construction of three-dimensional webs. Their communication system and the characteristics of the material structure have been then modelled and translated in a digital environment. A physical fabrication process, in which the simulated agents become drones in a real world environment, was concurrently developed. The goal was to investigate the architectural possibilities given by an autonomous aerial machine depositing fibrous material over inflatable formworks and its potential usefulness in specific sites where overall conditions don't allow traditional construction techniques.
keywords tectonics; robotics; multi-agent systems; stigmergy; drones; inflatables
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
doi https://doi.org/10.52842/conf.acadia.2017.512
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id sigradi2017_019
id sigradi2017_019
authors Shiordia López, Rodrigo
year 2017
title El medio es el contenido: Comunicación y evaluación del diseño paramétrico en un ambiente MOOC [The medium is the content: Communication and evaluation of parametric design in a MOOC environment.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.142-147
summary This paper describes the implementation of a massive online open course of parametric design. Firstly, the justification for understanding design education in an online system is discussed. A conceptualization of computational geometry as a didactic axis for teaching parametric design is posed. To achieve an evaluation of the course, a peer evaluation which had a rubric for each topic, based on a matrix of possibilities, was implemented. The viability of this evaluation system is discussed. Finally, the important and necessary items for success, as well as the disadvantages of this type of courses is concluded.
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2017_080
id caadria2017_080
authors Suzuki, Seiichi and Knippers, Jan
year 2017
title Topology-driven Form-finding - Implementation of an Evolving Network Model for Extending Design Spaces in Dynamic Relaxation
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 489-498
doi https://doi.org/10.52842/conf.caadria.2017.489
summary This paper introduces a novel computational design methodology called topology-driven for the numerical form-finding of discrete networks and presents the essential building block for storing and processing information. Numerical form-finding focuses on computing the optimum geometric configuration of lightweight structures in which shape is the result of reciprocal dependencies between forces, material behaviors and structural performances. Among the design community, Dynamic Relaxation (DR) has gained in popularity given its capacity to support more flexible and interactive design spaces in form-finding. However, common implementations of networks models only focus on the interactive exploration of material and geometrical properties without further specification for topological dynamization. For facing this problematic, we propose an object-oriented approach to attach specific functionalities to particular pieces of data within the numerical schema. Here, we describe the implementation of a rule-based system for managing objects´ interactions in order to continuously track topological and geometrical changes. Based on this concept, larger design spaces can be developed for the interactive exploration of structural shapes.
keywords Topology-driven; Form-Finding; Dynamic Relaxation; Object Structures; Design Spaces
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_072
id ecaade2017_072
authors Varinlioglu, Guzden, Aslankan, Ali, Alankus, Gazihan and Mura, Gokhan
year 2017
title Raising Awareness for Digital Heritage through Serious Game - The Teos of Dionysos
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 647-654
doi https://doi.org/10.52842/conf.ecaade.2017.1.647
summary In this study, the serious game is conceptualized as a digital medium to convert archaeological knowledge into playable interactions via a case study in the ancient city of Teos. The Teos of Dionysos Game is a digital platform that allows players without specialist computer skills to explore the archaeological knowledge and experience an ancient urban setup. A mythological story about the God Dionysos has been verbally and visually transcribed and adapted for four distinctive settings of this ancient site. The familiar realm of an interactive space, navigated by intuitive behaviours in a game setting, conveys archaeological data, allowing players to build an empathic understanding of ancient architecture. Diverse stakeholders have already tested a mobile game prototype in a workshop, which explored whether those without a prior historical background can advance their existing knowledge through activities that aim at providing entertainment.
keywords digital heritage; serious game; puzzle; mobile game; public awareness
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2017_039
id ecaade2017_039
authors Weissenböck, Renate
year 2017
title ROBOTRACK - Linking manual and robotic design processes by motion-tracking
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 651-660
doi https://doi.org/10.52842/conf.ecaade.2017.1.651
summary This study investigates design opportunities fostered by fabrication processes, ex-ploring manual and robotic forming. It links handcraft and digital fabrication techniques by implementing a motion capture system. It suggests physical prototyping as a novel form of design research, operating in the dynamic field between human capabilities, machine skills, and material behavior. This paper presents a series of experimental case studies created in a seminar taught by the author at Graz University of Technology. In this course, students con-duct tactile experiments, forming panels by hand and by robot, guided by the material behav-ior and reaction. Thereby, they explore the creation of architectural form in a dynamic inter-play between human, machine and material. Movement and speed of hand forming proce-dures are recorded into digital data, and then converted into machine code, driving a 6-axis industrial robotic arm. By using the same set-up for manual and robotic forming, both pro-cesses are relatable.
keywords design by making; digital fabrication; robotic fabrication; thermoforming; material behavior; motion tracking; craft; design education; design research; intuition; human machine interaction
series eCAADe
type normal paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_971170 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002