CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 479

_id ecaade2017_148
id ecaade2017_148
authors Baseta, Efilena, Sollazzo, Aldo, Civetti, Laura, Velasco, Dolores and Garcia-Amorós, Jaume
year 2017
title Photoreactive wearable: A computer generated garment with embedded material knowledge - A computer generated garment with embedded material knowledge
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 317-326
doi https://doi.org/10.52842/conf.ecaade.2017.2.317
summary Driven by technology, this multidisciplinary research focuses on the implementation of a photomechanical material into a reactive wearable that aims to protect the body from the ultraviolet radiation deriving from the sun. In this framework, the wearable becomes an active, supplemental skin that not only protects the human body but also augments its functions, such as movement and respiration. The embedded knowledge enables the smart material to sense and exchange data with the environment in order to passively actuate a system that regulates the relation between the body and its surroundings in an attempt to maintain equilibrium. The design strategy is defined by 4 sequential steps: a) The definition of the technical problem, b) the analysis of the human body, c) the design of the reactive material system, as well as d) the digital simulations and the digital fabrication of the system. The aforementioned design strategies allow for accuracy as well as high performance optimization and predictability in such complex design tasks, enabling the creation of customized products, designed for individuals.
keywords smart materials; wearable technology; data driven design; reactive garment; digital fabrication; performance simulations
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201715103
id ijac201715103
authors Wortmann, Thomas
year 2017
title Surveying design spaces with performance maps: A multivariate visualization method for parametric design and architectural design optimization
source International Journal of Architectural Computing vol. 15 - no. 1, 38-53
summary This article presents a method to visualize high-dimensional parametric design spaces with applications in computational design processes and interactive optimization. The method extends Star Coordinates using a triangulation-based interpolation with Barycentric Coordinates. It supports the understanding of design problems in architectural design optimization by allowing designers to move between a high-dimensional design space and a low-dimensional Performance Map. This Performance Map displays the characteristics of the fitness landscape, develops designers’ intuitions about the relationships between design parameters and performance, allows designers to examine promising design variants, and delineates promising areas for further design exploration.
keywords Fitness landscape, design space exploration, multivariate visualization, optimization, Star Coordinates
series other
type normal paper
email
last changed 2019/08/02 08:25

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2017_136
id caadria2017_136
authors Zhang, Cheng and Ong, Lijing
year 2017
title Optimization of Window-Wall-Ratio using BIM-based Energy Simulation
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 397-405
doi https://doi.org/10.52842/conf.caadria.2017.397
summary In this research, sensitivity analysis is applied to investigate the impact from U-values of walls, U-value of windows, and the window-to-wall ratio. The purpose is to find the co-relationship between those parameters with the building energy performance, including embedded energy in materials and operational energy during the lifecycle. Building Information Modeling (BIM) is used as a platform to obtain the material quantities and carry on energy simulation. A case study is applied for a manufactory plant in Suzhou, China. By applying both local sensitivity analysis and global sensitivity analysis, it is found that thermal properties of walls have insignificant impact on Operational Energy to Embodied Energy (OE-EE) relationship of Window-Wall-Ratio (WWR) whereas changing thermal properties of windows affects the OE-EE relationship behaviour of WWR. Lowering U-value of windows brings positive impact to the OE-EE relationship of WWR, and vice versa. Therefore, suggestions are made as reducing/increasing U-value of windows while increasing/decreasing the WWR of building.
keywords Building Informaion Modeling; Window-Wall-Ratio; energy simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_204
id ecaade2018_204
authors de Oliveira, Maria Jo?o, Moreira Rato, Vasco and Leit?o, Carla
year 2018
title KINE[SIS]TEM'17 - A methodological process for a Nature-Based Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2018.1.561
summary Architecture is the mediator between the Environment and Humans. Nature maximal performance and minimal resources creations are Humanity inspiration that led us to exceed structural, material, mechanisms, tools, systems and methods boundaries (Oxman, 2010).Nature are the Architect of the most reliable and sustainable systems. Looking into Nature's lessons, this paper presents a Nature-based design methodology conducted during Kine[SIS]tem'17 Shading Systems International Summer School, held by the ISCTE-Instituto Universitário de Lisboa, Portugal, between 19th - 30th June 2017. The methodology encompasses two main stages, one before and other during the Summer School. From a pre-definition of context constrains, a nature based design strategy, to a planning of the manufacture and construction still during the phase of development of the design, conducted the Summer School participants through a defined biomimetic process that achieved the construction of 1:1 scale prototype.
keywords Kinesis; Shading; System; Nature-based design
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201715202
id ijac201715202
authors Koutamanis, Alexander
year 2017
title Briefing and Building Information Modelling: Potential for integration
source International Journal of Architectural Computing vol. 15 - no. 2, 120-133
summary The article brings together the subjects of briefing and Building Information Modelling. It considers the brief as information source for Building Information Modelling and Building Information Modelling as an environment for automating brief- related analysis and guidance. The approach is characterized by feedforward and feedback, incorporation of constraints from the brief in Building Information Modelling, connection of briefing goals to performance analysis and correlation of requirements in the brief to Building Information Modelling object properties and relations. To test the approach, 10 briefs are parsed into goals, constraints and requirements, which are then considered for integration in Building Information Modelling. As the majority of these items can become part of a model and subject to automated analyses, integration of briefing in Building Information Modelling is proposed as a viable option that can improve design and briefing performance but also signals significant changes to briefing.
keywords Briefing, Building Information Modelling, integration, continuity, feedforward, feedback, analysis
series other
type normal paper
email
last changed 2019/08/02 08:29

_id ecaade2017_033
id ecaade2017_033
authors Yan, Wei
year 2017
title WP-BIM: Web-based Parametric BIM Towards Online Collaborative Design and Optimization
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 527-534
doi https://doi.org/10.52842/conf.ecaade.2017.2.527
summary We present initial experiments of Web-based Parametric Building Information Modeling (WP-BIM) towards collaborative design, modeling, simulation, and optimization. A new framework that integrates Web-based information technology (WebGL graphics, networking, and Web browsers), and design computing technology (visual programming) into parametric BIM is prototyped for the experiments. The integration of Web technology is going to enable online collaborative and user participatory design. Connected through the Web platform, a BIM model, visual programming-based user interfaces for parametric changes, and an optimization algorithm, which may reside in different servers or local computers in different geographical locations, have the potential to be integrated and working together to resolve design optimization problems, especially if combined with cloud-based performance simulation tools. After future development, this may allow architects, engineers, clients, etc. to collaboratively work on a project with up-to-date building data and different design and simulation tools.
keywords Web-based; Parametric Modeling; BIM; Collaborative Design; Optimization
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
doi https://doi.org/10.52842/conf.acadia.2017.212
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia17_248
id acadia17_248
authors Felbrich, Benjamin; Fru?h, Nikolas; Prado, Marshall; Saffarian, Saman; Solly, James; Vasey, Lauren; Knippers, Jan; Menges, Achim
year 2017
title Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 248-259
doi https://doi.org/10.52842/conf.acadia.2017.248
summary Fiber composite materials have tremendous potential in architectural applications due to their high strength-to-weight ratio and their ability to be formed into complex shapes. Novel fabrication processes can be based on the unique affordances and characteristics of fiber composites. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet long-range machines—such as unmanned aerial vehicles (UAV)—with strong, precise, yet limited-reach industrial robots. This collaborative concept enables a scalable fabrication setup for long-span fiber composite construction. This paper describes the integrated design process and design development of a large-scale cantilevering demonstrator, in which the fabrication setup, robotic constraints, material behavior, and structural performance were integrated in an iterative design process.
keywords material and construction; fabrication; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:50

_id acadia19_90
id acadia19_90
authors Forward, Kristen; Taron, Joshua
year 2019
title Waste Ornament
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 90-99
doi https://doi.org/10.52842/conf.acadia.2019.090
summary The emergence of computational design and fabrication tools has escalated the potentials of architectural ornamentation to become innovative, beautiful, and highly sustainable. Historically, ornament has been known to express character and reveal relationships between materiality, technological advances, and societal evolution. But ornament rapidly declined in the late 1800s in large part due to mechanization and modernist ideals of uniform, unadorned façade components. However, ornamentation in architecture has recently reappeared—a development that can be linked closely to advancements in computational design and digital fabrication. While these advancements offer the ability to create expressive architecture, their potential contribution to the improvement of sustainable architecture has largely been overlooked (Augusti-Juan and Habert 2017). This paper provides a brief revisitation to the history of ornament and investigates the impact of computation and automation on the production of contemporary ornament. The paper also attempts to catalog examples of how designers have used computational technologies to address the growing criticality of environmental concerns. Moreover, the paper presents the Waste Ornament project, a research platform that critically examines how we can leverage technology to augment the visual and sustainable performance of facade ornamentation to reduce energy use in buildings. Three sub-projects are identified as territories for further research into sustainable ornamentation, ranging from material sourcing, to high-performance buildings, to the development of a systematic upcycling process that transforms old facades into new ones. While the examples are not exhaustive, they attempt to interlace the general ideas of waste and ornament by addressing particular issues that converge at building envelopes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
doi https://doi.org/10.52842/conf.caadria.2017.841
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2017_309
id ecaade2017_309
authors Lo Turco, Massimiliano, Zich, Ursula, Astolfi, Arianna, Shtrepi, Louena and Botto Poaola, Matteo
year 2017
title From digital design to physical model - Origami techniques applied to dynamic paneling shapes for acoustic performance control
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 77-86
doi https://doi.org/10.52842/conf.ecaade.2017.2.077
summary The recent trend toward non-standard and free form architecture has generated a lot of debate among the Scientific Community. The reasons can be found in the renewed interest in organic shapes, in addition to recent and powerful capabilities of parametric platforms. In this regard, the Visual Programming Language (VPL) interface gives a high level of freedom and control for conceiving complex shapes. The geometric problems in identifying a suitable shape have been addressed by relying on the study of Origami. The control of variable geometry has required the use of algorithmic models that ensure fast changes and free control of the model, besides a physical one made of rigid cardboard to simulate its rigid-foldability. The aim is to present a prototype of an adaptive structure, with an acoustic application, to control sound quality and perception in spaces where this has a central role, such as theatres or concert halls.
keywords parametric modeling; generative design; shape and form studies; acoustics conditions; digital Representation
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2017_269
id ecaade2017_269
authors Rahmani Asl, Mohammad, Das, Subhajit, Tsai, Barry, Molloy, Ian and Hauck, Anthony
year 2017
title Energy Model Machine (EMM) - Instant Building Energy Prediction using Machine Learning
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 277-286
doi https://doi.org/10.52842/conf.ecaade.2017.2.277
summary In the process of building design, energy performance is often simulated using physical principles of thermodynamics and energy behaviour using elaborate simulation tools. However, energy simulation is computationally expensive and time consuming process. These drawbacks limit opportunities for design space exploration and prevent interactive design which results in environmentally inefficient buildings. In this paper we propose Energy Model Machine (EMM) as a general and flexible approximation model for instant energy performance prediction using machine learning (ML) algorithms to facilitate design space exploration in building design process. EMM can easily be added to design tools and provide instant feedback for real-time design iterations. To demonstrate its applicability, EMM is used to estimate energy performance of a medium size office building during the design space exploration in widely used parametrically design tool as a case study. The results of this study support the feasibility of using machine learning approaches to estimate energy performance for design exploration and optimization workflows to achieve high performance buildings.
keywords Machine Learning; Artificial Neural Networks; Boosted Decision Tree; Building Energy Performance; Parametric Modeling and Design; Building Performance Optimization
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
doi https://doi.org/10.52842/conf.acadia.2018.444
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2017_051
id ecaade2017_051
authors Salkini, Hadya, Swaid, Bashar, Greco, Laura and Lucente, Roberta
year 2017
title Emerging an Adaptive Kinetic Mashrabia for Reviving the Environmental Responsive in the Traditional Courtyard House of Aleppo
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 299-308
doi https://doi.org/10.52842/conf.ecaade.2017.1.299
summary Abstract:Due to the widespread of computational processes techniques, many manuals and modern automatic shading systemshave been developed. Although, of their high environmental performance, most of these systems failed to adapt neitherto the morphological configuration nor to the special character of the historical contexts. Thus, empowerment the roleof the bio-climatic design process in reconstructing the courtyard house in Aleppo post-war requires translating theform and structure of the vernacular architectural elements into adaptive and dynamic ones, for emerging newinnovative solutions with high environmental responsive. The research adopts this hypothesis for developing a newshading screen system with a kinetic structure technique. An evolutionary multi-criteria optimization for geneticalgorithm technique is used and integrated with bio-climatic tools such as Ladybug and Honeybee plug-ins forGrasshopper and Rhino software, for obtaining the optimum adaptive kinetic Mashrabia that enables reviving theenvironmental responsive in the traditional courtyard house of Aleppo post-war.
keywords Keywords: Parametric Design, Environmental Responsive, Adaptive Kinetic Structure.
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_582
id acadia17_582
authors Staback, Danniely; Nguy?n, M?Dung; Addison, James; Angles, Zachary; Karsan, Zain; Tibbits, Skylar
year 2017
title Aerial Pop-Up Structures
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 582- 589
doi https://doi.org/10.52842/conf.acadia.2017.582
summary Research into self-assembly systems has been growing in recent years, focusing on the design and engineering of materials to react to environmental factors, which trigger a chain of reactions promoting the components to build themselves. This paper attempts to expand this field with the design and testing of a full-scale structure that could be dropped high above the ground, self-assemble in the air in a matter of seconds, and form an inhabitable space on the ground. This system uses spline-based fiberglass rods, folded in specific configurations and connected with parachute surfaces as the main material system, enabling the global aerial performance. A series of drop tests were conducted from a 100? crane to investigate the unfolding sequence, the release mechanisms, and the parachute configurations, leading to its successful aerial assembly.
keywords paper material and construction; physics; smart materials; smart assembly; construction; form finding
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_117
id ecaade2017_117
authors Wageh, Mohamed Adel and Gadelhak, Mahmoud
year 2017
title Optimization of Facade Design for Daylighting and View-to-Outside - A case study in Lecco, Lombardy, Italy
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 229-236
doi https://doi.org/10.52842/conf.ecaade.2017.2.229
summary Minimizing the impact of shading devices on the view to the surrounding view is essential for indoor spaces that overlook exceptional scenery and views. Building facades that overlook such views require a special care not to obstruct the view to the outdoors. At the same time, poorly designed shading devices can result in high solar penetration and glare probability affecting the ability of the users to enjoy the outdoor view. In this paper, we analyze the effect of adding different shading devices and configurations to a south façade for a workshop space in Lecco, Italy. A parametric model of five types of shading devices was analyzed for the daylighting, glare and view performance. The trade-off between the objectives and the cases that achieved satisfactory performance in all three criteria were presented.
keywords Computational design; Daylighting; Optimization; View to outside
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2017_046
id sigradi2017_046
authors Yamana, Daniella Naomi; Jady Medeiros, Eduardo Ignacio Lopes, Paulo Eduardo Fonseca de Campos
year 2017
title Calçadas Drenantes: Intervenções físicas com desenvolvimento social [Draining pavements: physical interventions with social development]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.314-321
summary This work presents the development of an applied research related to the installation of rainwater drainage systems in areas of economic and social vulnerability in São Paulo City, Brazil. It is also relevant for us to encourage participatory processes that involve the local community in problem-solving activities, while allowing appropriation of the technology applied. In this case, we are employing light prefabrication based on high performance microconcrete, molded in formwork produced with the aid of digital manufacturing. Our main purpose is to promote urban improvements in precarious settlements along with local economic development, made possible by self-management and community production.
keywords Collaborative urbanism; Urban drainage; Microconcrete; Digital fabrication.
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2017_169
id ecaade2017_169
authors Zupancic, Tadeja, Verbeke, Johan, Herneoja, Aulikki and Achten, Henri
year 2017
title Competences for Digital Leadership in Architecture
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 289-296
doi https://doi.org/10.52842/conf.ecaade.2017.1.289
summary The use of "digital technology" - computer software, new material application, rapid prototyping, Computer Aided Manufacturing, Virtual Reality, collaborative design - is no longer a novel and innovative aspect of architectural design. In fact, many offices and architects use a varied mix of these technologies in their daily practice. We can observe that digital technology has become a mature part of architectural practice. In this paper, we want to outline an outstanding level of excellence in the use of digital technologies that enable certain widely acknowledged offices (for example Foster and Partners, UN Studio, BIG, and so on) to take their design work to high degree of quality and performance. We call this level and phenomenon "digital leadership." Digital leadership goes beyond technical digital skills. It is an integrated and holistic approach that makes no distinction between "architectural design" and "digital technology" and in fact creates a new blend of both. We propose that digital leadership has six key areas: Technological Ecologies; Creativity, Knowledge Processes, and Experimentation; Design and Research; Human Resources and Leadership; Collaborative and Explorative Environments and Impact of Digital Leadership. These are discussed in more detail in this paper.
keywords architecture; digital leadership competences; research by design; creative practice; design research; impact
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_286352 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002