CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id cf2017_051
id cf2017_051
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Parameterisation of Semantic 3D City Models for Urban Design Optimisation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 51-65.
summary We present an auto-parameterisation tool, implemented in Python, that takes in a semantic model, in CityGML format, and outputs a parametric model. The parametric model is then used for design optimisation of solar availability and urban ventilation potential. We demonstrate the tool by parameterising a CityGML model regarding building height, orientation and position and then integrate the parametric model into an optimisation process. For example, the tool parameterises the orientation of a design by assigning each building an orientation parameter. The parameter takes in a normalised value from an optimisation algorithm, maps the normalised value to a rotation value and rotates the buildings. The solar and ventilation performances of the rotated design is then evaluated. Based on the evaluation results, the optimisation algorithm then searches through the parameter values to achieve the optimal performances. The demonstrations show that the tool eliminates the need to set up a parametric model manually, thus making optimisation more accessible to designers.
keywords City Information Modelling, Conceptual Urban Design, Parametric Modelling, Performance-Based Urban Design
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_011
id ecaade2017_011
authors Haeusler, M. Hank, Asher, Rob and Booth, Lucy
year 2017
title Urban Pinboard - Development of a platform to access open source data to optimise urban planning performance
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 439-448
doi https://doi.org/10.52842/conf.ecaade.2017.1.439
summary In this paper we present our research to design and develop 'Urban Pinboard', a platform to optimise urban planning process and performance. We argue that second machine age general purpose technologies can now be accessed for city modelling. Based on the observation that: GIS does offer a depository that can display urban data; data sets exist but often stored at different locations; there is a discrepancy of access to planning information; and the data often are not accessible to private / public sector and the general public on one location, Urban Pinboard aims to address these problems as an integrated digital platform that enables the public, private and community sectors to connect by contributing ideas, comments and proposals on all planning issues in a single platform. The paper outlines the background research, methodology and introduces the Urban Pinboard's features to create a single source of truth for planning data.
keywords Software development; web-based GIS platform; Urban Planning; planning data
series eCAADe
email
last changed 2022/06/07 07:49

_id cf2017_297
id cf2017_297
authors He, Yi; Schnabel, Marc Aurel; Chen, Rong; Wang, Ning
year 2017
title A Comprehensive Application of BIM Modelling for Semi-underground Public Architecture: A Study for Tiantian Square Complex, Wuhan, China
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 297-308.
summary The paper presents research on how Building Information Modelling (BIM) can be applied comprehensively throughout the design of an architectural project. A practical method based on BIM models that help to deal with multidisciplinary issues by integrating the design information from different sources, collaborators and project stages is formulated by adopting existing available tools. The ‘Tiantian Square’ building project in Wuhan, China combines a subway station with a commercial hug. According to the project’s size and complexity, our study focuses on the multiple cooperation of professionals from different backgrounds, including the departments of architectural design, structure (civil engineering), HVAC (Heating, Ventilation and Air Conditioning), water supply and drainage, and electrics and sustainable design. Our paper presents how the BIM model bridges between various simulation platforms through our technical system and management, including steps of transformation, simplification, analysis, reaction and improvement. Our research has helped to improve the overall efficiency and quality of the project. We generated a successful analysis-design approach for the initial design stages, which does not require in-depth analysis. It is a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Finally, we discuss how the coordination of different department becomes a crucial factor as we look forward to a more open, communicative and inter-relational design and development process.
keywords BIM, Subway Complex, Simulation, Semi-Underground Architecture
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2017_086
id caadria2017_086
authors Koh, Immanuel, Keel, Paul and Huang, Jeffrey
year 2017
title Decoding Parametric Design Data - Towards a Heterogeneous Design Search Space Remix
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 117-126
doi https://doi.org/10.52842/conf.caadria.2017.117
summary Designers or Non-Designers are not able to effectively access, view, search, discover, collect, reuse, remix and share parametric design data (PDD) for either professional or educational purposes. PDD here refers to the meta-data of 3D models generated by visual dataflow modelling software packages used in CAD/CAM industry. This ineffectiveness is a direct consequence of the deliberately proprietary nature of most PDD file formats and the restricted use within their respective desktop-based software environments. This paper presents an initial software prototype capable of automating the process of decoding a commonly used PDD file format and then re-encoding it with new set of metrics to facilitate multiple PDD searchability, comparability and interoperability, via an integrated web interface querying a design data repository. All PDDs are conceptualized as genealogies of numerical or geometric transformations and explicitly encoded with a graph-based data structure. The goal is to eventually learn from its own big data and begin to artificially generate novel PDDs heterogeneously.
keywords Design Decoder; Design Space Exploration; Parametric Design; Visual Analytics; Design Data
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2017_085
id caadria2017_085
authors Lee, Yong-Ju, Kim, Mi-Kyoung and Jun, Han-Jong
year 2017
title Green Standard for Energy and Environmental Design - The Development of an Assessment System Based on a Green BIM Template
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 623-632
doi https://doi.org/10.52842/conf.caadria.2017.623
summary To construct a building that meets the requirements of certification in terms of environmental friendliness, there must be a process that considers the certification criteria from the initial design phase. However, there are numerous complicated task performance procedures to analyse many required items in detail as well as perceive and apply the data requirements efficiently. Currently, Building Information Modeling (BIM) is gaining attention as a solution for environmental problems in architecture. BIM shows precisely how a virtual building is modelled in the real world, thereby providing an objective information and analysis through a simulation. However, the result values of BIM library or modelling may turn out differently as a result of the work environment of designers or users that is not standardized. Therefore, this study applies the modelled and extracted BIM data using the template and library established in the BIM add-in planning and design phase to review in advance the Green Standard for Energy and Environmental Design (G-SEED) assessment by item and manual input of users with the BIM-based (add-in) G-SEED assessment system, thereby providing support to enable users to establish specific strategies in designing green buildings.
keywords GBT; G-SEED; BIM System; BIM Add-in; Apartment
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_427
id ecaade2018_427
authors Matcha, Heike, Ljubas, Ante and Gueldemet, Harun
year 2018
title Printing a Coffee Bar - An investigation into mid-scale 3D printing
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 59-68
doi https://doi.org/10.52842/conf.ecaade.2018.2.059
summary We present and discuss an exploration of the possibilities and properties of 3D printing with a printing space of 1 cubic meter, and how those can be integrated into architectural education through an experimental design and research course with students of architecture.We expand on issues presented at the eCAADe conference 2017 in Rome [Ref 6] by increasing the complexity and size of our prints, printing not a model to scale, but a full scale funtional prototype of a usable architectural object: A coffee bar.
keywords 3D Printing; Parametric Modelling; Full Scale Project
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia17_110
id acadia17_110
authors Arnowitz, Ethan; Morse, Christopher; Greenberg, Donald P.
year 2017
title vSpline: Physical Design and the Perception of Scale in Virtual Reality
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 110-117
doi https://doi.org/10.52842/conf.acadia.2017.110
summary Virtual reality provides a heightened sense of immersion and spatial awareness that provides a unique opportunity for designers to perceive and evaluate scale and space. At the same time, traditional sketches and small-size physical models provide tactile feedback that allow designers to create, comprehend, and explore complex geometric relationships. Through the development of vSpline, a modeling application for virtual reality, we explore the potential for design within a virtual spatial environment to blur the boundaries between digital and physical stages of design, and seek to combine the best of both virtual and analog worlds. By using spline-based closed meshes created directly in three-dimensional space, our software provides the capabilities to design, modify, and save the information in the virtual world and seamlessly convert the data to evaluate the printing of 3D physical models. We identify and discuss important questions that arise regarding relationships of perception of scale, digital-to-physical domains, and new methods of input and manipulation within a 3D immersive space.
keywords design methods; information processing; hci; vr; ar; mixed reality; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id cf2017_585
id cf2017_585
authors Ben, Yuqiang; Niblock, Chantelle; Bonenberg, Lukasz
year 2017
title Lincoln Cathedral Interactive Virtual Reality Exhibition
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 585-595.
summary This paper demonstrates a workflow converting terrestrial laser scan (TLS) data into an interactive virtual reality (VR) platform. A VR exhibition prototype of Lincoln Cathedral was created to validate the established workflow in terms of the technical and visual performance, usability, and functionality. It combined TLS data and storytelling to produce a shareable platform, inviting opportunities for public engagement, and to facilitate custodians with the tools to maintain the building’s heritage. The paper discusses the use of open sourcesoftware and suggests future work.
keywords 3D Laser Scan, Virtual Reality, User Experience, Building Heritage
series CAAD Futures
email
last changed 2017/12/01 14:38

_id sigradi2017_071
id sigradi2017_071
authors Bueno, Ernesto; Antônio Carlos de Quadros Gonçalves Neto, Caio Henrique Mehl
year 2017
title Análise de variações no desempeno lumínico do Centro Cívico de Curitiba através de modelagem e simulação paramétrica [Analysis of variations in daylight performance of the Curitiba Civic Center through parametric modeling and simulation]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.486-490
summary To ensure access to sunlight in urban planning, specialized software is available. Mainly used in the initial stages, these tools allow the study of the environmental performance of the proposal. However, neighborhood impact is seen as a secondary aspect, usually evaluated with GIS tools, simulating pre-existing or proposed situations. However, visual programming tools allow, data processing in addition to parametric modeling, streamlining the process of analysis of architectural and urban pre-existences and proposals. From a case study, we present a methodology that uses these tools to demonstrate the loss of daylight performance of open spaces due to urban densification.
keywords Urban daylight performance; Environmental performance simulation; Parametric urban modeling; Grasshopper.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2017_040
id caadria2017_040
authors Haslop, Blaire, Schnabel, Marc Aurel and Aydin, Serdar
year 2017
title Glitch Space - Experiments on Digital Decay to Remap the Anatomy of Glitch in 3D
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 591-600
doi https://doi.org/10.52842/conf.caadria.2017.591
summary This research informs of a series of experimental design practices for the understanding computational glitches in architecture which appears to be equivalently a 'given' as well as an 'informed'. 'Glitch-space' is introduced to navigate the discussion through a spatial interpretation of digital decay. Currently glitches are only explored as forms of 2D art. We however, look to reconnect the underlying data to its digital architectural spatial form. Our methodology a systematic iterative process of transformational change to explore design emergence on the base of computational glitches. A numerical data driven process is explored using decayed files which are turned into 3D formal expressions. In this context, stereoscopic techniques are experimented, helping understand further how glitch can be performed within a 3D virtual environment. Ultimately we explore digital architectural form existing solely in the digital realm that confidently expresses glitch in both its design process and aesthetic outcome. Thus, our research intends to bring a level of authenticity with the notion of 'glitch-space' by discussing 3D interpretations of glitch in an architectural form.
keywords Digital Decay; Glitch; Digital Design Methods; Glitch-space; Data Interpretation
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
doi https://doi.org/10.52842/conf.acadia.2017.330
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2023_362
id caadria2023_362
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldabous, Rahaf, Aldaboos, Sarah and Lopez Rodriguez, Alvaro
year 2023
title Fabrication of Complex Clay Structures Through an Augmented Reality Assisted Platform
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 413–422
doi https://doi.org/10.52842/conf.caadria.2023.1.413
summary The relationship between clay manufacturing and architectural design has a long trajectory that has been explored since the early 2000s. From a 3D printing or assembly perspective, using clay in combination with automated processes in architecture to achieve computational design solutions is well established. (Yuan, Leach & Menges, 2018). Craft-based clay art, however, still lacks effective computational design integration. With the improvement of Augmented Reality (AR) technologies (Driscoll et al., 2017) and the appearance of digital platforms, new opportunities to integrate clay manufacturing and computational design have emerged. The concept of digitally transferring crafting skills, using holographic guidance and machine learning, could make clay crafting accessible to more workers while creating the potential to share and exchange digital designs via an open-source manufacturing platform. In this context, this research project explores the potential of integrating computational design and clay crafting using AR. Moreover, it introduces a platform that enables AR guidance and the digital transfer of fabrication skills, allowing even amateur users with no prior making experience to produce complex clay components.
keywords Computer vision, Distributed manufacturing, Augmented craftsmanship, Augmented reality, Real-time modification, Hololens
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia17_404
id acadia17_404
authors Miller, Nathan; Stasiuk, David
year 2017
title A Novel Mesh-Based Workflow for Complex Geometry in BIM
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 404- 413
doi https://doi.org/10.52842/conf.acadia.2017.404
summary Various well-established digital modeling software platforms enable architectural design teams to rapidly sculpt and iterate over complex, doubly curved, and organic geometries. However, the software platforms that are used to author such geometries are rarely the same that are used for later-stage project development and delivery. For these phases of project execution, projects of even modest complexity are managed through building information modeling (BIM) software. Yet most BIM solutions are not suitable for natively handling the design of geometrically complex forms, failing to provide lightweight, responsive, or flexible authoring interfaces. A further complication is their inability to readily import or integrate any complex geometric elements or assemblies generated elsewhere. The development of improvements to interoperability between authoring and production software therefore remains an important goal in contemporary architectural practice. This paper describes a practical methodology that then engages various Application Programming Interfaces (APIs) and open-source programming tools to address the problem of interoperability for complex geometry in BIM. Specifically, it identifies meshes as a well-positioned data structure for use within the context of preparing complex design geometry for BIM production. We describe a novel technique for the efficient interoperability of complex NURBS poly-surface objects from one authoring platform, employing design meshes that cleanly capture not just geometry, but also user and procedurally derived descriptive data elements for advanced representation and analysis within a BIM production environment.
keywords design methods; information processing; BIM
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_059
id ecaade2017_059
authors Narangerel, Amartuvshin, Lee, Ji-Hyun and Stouffs, Rudi
year 2017
title Thermal and Daylighting Optimization of Complex 3D Faceted Façade for Office Building
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 209-218
doi https://doi.org/10.52842/conf.ecaade.2017.1.209
summary Conventional façade design and its impact on building energy as well as indoor comfort is a well-researched topic in the architecture field. This paper examines the potential of a complex 3D shaped building envelope, elaborating on previous work by implementing energy simulation within the building façade optimization process. The multi-objective optimizations are conducted considering total thermal energy, electricity generation through BIPV, and daylighting in generic single person office rooms under meteorological data of Korea and Singapore. The performance of the non-dominants is analyzed and the results show an improvement in all objectives comparing with the preliminary study.
keywords Parametric facade design; muli-objective optimization; energy optimization; daylighting; form finding
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2017_003
id ecaade2017_003
authors Yu, Kuai, Haeusler, M. Hank and Fabbri, Alessandra
year 2017
title Parametric master planning via topological analysis using GIS data
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 429-438
doi https://doi.org/10.52842/conf.ecaade.2017.1.429
summary This paper discusses parametricism in regards to urban planning and infrastructure. The objective is to bridge GIS data (using FLUX) and the parametric design process together into urban master planning. Creating a tool which generates the infrastructure and grid system automatically using specified manual user inputs, allowing for further generation of 3D forms from the block patterns. It also critically analyses the traditional master planning approach of grid system division in regards to topography, and how classical urban designers did not consider topographical constraints when a square grid system was employed to structure a city. The analysis of existing parametric master plans will also show that data driven planning has not put topography as a significant hierarchical. Through case studies using the developed tool, a clearer understanding of how topography can shape infrastructure can be understood. The analysis of topography is the main driving data iteration point which generates the infrastructure, grid, and division systems.
keywords Master Plan; Parametricism; Urban Design; GIS Data; Topography Optimisation; FLUX
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2017_057
id caadria2017_057
authors Buš, Peter, Treyer, Lukas and Schmitt, Gerhard
year 2017
title Urban Autopoiesis - Towards Adaptive Future Cities
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 695-704
doi https://doi.org/10.52842/conf.caadria.2017.695
summary A city, defined as a unity of inhabitants with their environment and showing self-creating and self-maintaining properties, can be considered as an autopoietic system if we take into account its bottom-up processes with unpredictable behaviour of its components. Such a property can lead to self-creation of urban patterns. These processes are studied in well-known vernacular architectures and informal settlements around the world and they are able to adapt according to various conditions and forces. The main research objective is to establish a computational design-modelling framework for modelling autopoietic intricate characteristics of a city based on an adaptability, self-maintenance and self-generation of urban patterns with adequate visual representation.The paper introduces a modelling methodology that allows to combine planning tasks with inhabitants' interaction and data sources by using an interchange framework to model more complex urban dynamics. The research yields preliminary results tested in a simulation model of a redevelopment of Tanjong Pagar Waterfront, the container terminal in the city of Singapore being transformed into a new future centre as a conducted case study.
keywords Urban Metabolism; Urban Autopoiesis; Computational Interchange; Emergent Urban Strategies; Adaptive City
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_10388 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002