CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 574

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_175
id caadria2017_175
authors Smolik, Andrei, Chang, Tengwen and Datta, Sambit
year 2017
title Prototyping Responsive Carrier-Component Envelopes
doi https://doi.org/10.52842/conf.caadria.2017.521
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 521-528
summary The capacity to respond dynamically to changes in external and internal environments open new possibilities in the interaction between buildings, humans and the environment. The development of dynamic envelopes requires the integration of various systems- geometric, structural, and electronic-responsive and their interaction. The paper reports the results from the "Dynamic Cloud Project" and presents a design and fabrication methodology to integrate kinetic behaviour with material constraints; the simulation of responses by connecting components with programmable input and behaviour. The paper presents a modular, component-driven systems construction based on a carrier-component surface geometry called responsive carrier-component envelope (RCCE) and describes the modelling, fabrication and assembly of such envelopes. The protocols developed in the project are reported in the paper and highlight the opportunities and consequences of how local components relate to the whole carrier envelope with multiple constraints and scale considerations. The results of the prototyping and experimentation with this project are reported in the paper. The paper also discusses future applications of the research and outlines new possibilities and design opportunities in prototyping responsive carrier-component envelopes.
keywords Dynamic envelope; carrier component mesh; sensor interaction; interactive architecture; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201715205
id ijac201715205
authors Wang, Tsung-Hsien; Olivia Espinosa Trujillo, Wen-Shao Chang and Bailin Deng
year 2017
title Encoding bamboo’s nature for freeform structure design
source International Journal of Architectural Computing vol. 15 - no. 2, 169-182
summary Bamboo is a construction material that is renewable, environmentally friendly and widely available. It has long been used in various projects, ranging from temporary, easily assembled and rectilinear structures to complex freeform pavilions. Design with bamboo has never been easy to architects and engineers due to its irregular shape and round section. This prompts the need to develop a new design process that can accommodate those properties that hinder bamboo to be used by designers. In this article, we take a close look at freeform structure design and specifically demonstrate how systematically and algorithmically parametric modelling can be used to tackle bamboo material irregularities and bamboo jointing challenges. A two-stage optimization process is proposed to support a fabricable freeform structure design through encoding material properties and freeform shape optimization. The approach approximates the given freeform shape using a finite set of unique bamboo elements while maintaining the aesthetic design intention. By limiting the number of bamboo elements, it will provide insight to both designers and engineers on the efficiency and cost benefits of producing required structure elements for the final assembly.
keywords Freeform structure design, bamboo structures, bamboo joint design, shape optimization, shape rationalization
series other
type normal paper
email
last changed 2019/08/02 08:31

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_92
id acadia17_92
authors Anzalone, Phillip; Bayard, Stephanie; Steenblik, Ralph S.
year 2017
title Rapidly Deployed and Assembled Tensegrity System: An Augmented Design Approach
doi https://doi.org/10.52842/conf.acadia.2017.092
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 92-101
summary The Rapidly Deployable and Assembled Tensegrity (RDAT) project enables the efficient automated design and deployment of differential-geometry tensegrity structures through computation-driven design-to-installation workflow. RDAT employs the integration of parametric and solid-modeling methods with production by streamlining computer numerically controlled manufacturing through novel detailing and production techniques to develop an efficient manufacturing and assembly system. The RDAT project emerges from the Authors' research in academia and professional practice focusing on computationally produced full-scale performative building systems and their innovative uses in the building and construction industry.
keywords design methods; information processing; AI; machine learning; form finding; VR; AR; mixed reality
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_027
id ecaade2017_027
authors Carl, Timo, Schein, Markus and Stepper, Frank
year 2017
title Sun Shades - About Designing Adaptable Solar Facades
doi https://doi.org/10.52842/conf.ecaade.2017.2.165
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 165-174
summary External shading structures are a well-established typology for reducing solar heat loads. A major disadvantage is their inflexible nature, blocking views from inside and desired solar radiation for seasons with less sunshine hours. An adaptive approach on the other end can accommodate dynamic environmental exchange and user control. Furthermore, kinetic movement has great potential to create expressive spatial structures. However, such typologies are inherently complex. This paper presents the design process for two novel adaptive façade typologies, conducted on an experimental level in an educational context. Moreover, we will discuss the conception of a suitable methodological framework, which we applied to engage the complexity of this design task. Thereby we will highlight the importance of employing various methods, combining analogue and computational models not in a linear sequence, but rather in an overlapping, iterative way to create an innovation friendly design setting. The Sun Shades project offers insight into the relationships between design potentials inherent in adaptable structures and the advantages and limitation of computational methods employed to tackle them.
keywords computational design methodology; performance-based design; associative geometry modelling; solar simulation; physical form-finding; design theory
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2017_051
id cf2017_051
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Parameterisation of Semantic 3D City Models for Urban Design Optimisation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 51-65.
summary We present an auto-parameterisation tool, implemented in Python, that takes in a semantic model, in CityGML format, and outputs a parametric model. The parametric model is then used for design optimisation of solar availability and urban ventilation potential. We demonstrate the tool by parameterising a CityGML model regarding building height, orientation and position and then integrate the parametric model into an optimisation process. For example, the tool parameterises the orientation of a design by assigning each building an orientation parameter. The parameter takes in a normalised value from an optimisation algorithm, maps the normalised value to a rotation value and rotates the buildings. The solar and ventilation performances of the rotated design is then evaluated. Based on the evaluation results, the optimisation algorithm then searches through the parameter values to achieve the optimal performances. The demonstrations show that the tool eliminates the need to set up a parametric model manually, thus making optimisation more accessible to designers.
keywords City Information Modelling, Conceptual Urban Design, Parametric Modelling, Performance-Based Urban Design
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_084
id cf2017_084
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Generation of Semantic 3D City Models from Conceptual Massing Models
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 84-100.
summary We present a workflow to automatically generate semantic 3D city models from conceptual massing models. In the workflow, the massing design is exported as a Collada file. The auto-conversion method, implemented as a Python library, identifies city objects by analysing the relationships between the geometries in the Collada file. For example, if the analysis shows that a closed poly surface satisfies certain geometrical relationships, it is automatically converted to a building. The advantage of this workflow is that no extra modelling effort is required, provided the designers are consistent in the geometrical relationships while modelling their massing design. We will demonstrate the feasibility of the workflow using three examples of increasing complexity. With the success of the demonstrations, we envision the utoconversion of massing models into semantic models will facilitate the sharing of city models between domain-specific experts and enhance communications in the urban design process.
keywords Interoperability, GIS, City Information Modelling, Conceptual Urban Design, Collaborative Urban Design Process
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2017_042
id caadria2017_042
authors Coorey, Ben and Coorey, Anycie
year 2017
title Generating Urban Form
doi https://doi.org/10.52842/conf.caadria.2017.261
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 261-269
summary Modern design of urban forms is venturing towards performative, site-specific architecture that are formed according to the attributes of its urban context. Parametric modelling techniques offer designers the ability to embed generative mechanisms into the design process to allow performance based design. This paper focuses on the development of a synthesis model that generates an Urban Form schema using computational design principles. The design system illustrates a rule-based systematic approach to urban form generation and is a precursor to the automatic exploration of urban forms based on design analytics and evaluation of urban metrics. The role of the architect begins to shift from the designer of objects to the designer of processes with urban planning following a trajectory of data-generated and contextual specific design.
keywords Parametric Modelling; Urban Modelling; Scripting; Urban Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_132
id caadria2017_132
authors Feist, Sofia, Ferreira, Bruno and Leit?o, António
year 2017
title Collaborative Algorithmic-based Building Information Modelling
doi https://doi.org/10.52842/conf.caadria.2017.613
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 613-622
summary Algorithmic-based Building Information Modelling (A-BIM) allows the development of BIM models through algorithms. In a collaborative environment, A-BIM requires management strategies to deal with concurrent development of architectural projects. However, despite there being several tools that support this type of collaborative work, they are not appropriate for A-BIM because: (1) they track changes in the generated model instead of the code where the changes originate from, and (2) they are vendor-specific while A-BIM models might be generated for different BIM applications. In this paper, we discuss the use of Version Control (VC) for project management and concurrent development of A-BIM projects. We evaluate VC for A-BIM through a series of scenarios in the context of a case study.
keywords Algorithmic Design; Programming; Algorithmic-based Building Information Modelling; Version Control; Collaborative Design
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2017_001
id caadria2017_001
authors He, Yi, Schnabel, Marc Aurel, Chen, Rong and Wang, Ning
year 2017
title A Parametric Analysis Process for Daylight Illuminance - The Influence of Perforated Facade Panels on the Indoor Illuminance
doi https://doi.org/10.52842/conf.caadria.2017.417
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 417-424
summary BIM modelling systems and graph-based modelling systems have been widely used in the architecture design process recently. Based on the systems, an alternative approach to study the influence of perforated façade panels on the indoor illuminance by using a parametric performance analysis in a practical architectural project is proposed. The workflow we developed makes the modelling process faster, more accurate, and easier to modify. From the circulation of modelling-to-analysis process, the performance can be compared, feedback can be generated. Accordingly, optimized design can be concluded. This study suggests an analysis method to evaluate the indoor illuminance performance in the early design stages. The simulation is not a conventional typical in-depth one, but a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Moreover, the first generation of digital modeling programs allow designers to conceive new forms, and allow these forms to be controled and realized. It reacts to the conference theme by presenting a protocol for a digital workflow in the early stage of the design development.
keywords Daylight illuminance; BIM; parametric sustainability; parametric modelling; facade panels
series CAADRIA
email
last changed 2022/06/07 07:49

_id cf2017_297
id cf2017_297
authors He, Yi; Schnabel, Marc Aurel; Chen, Rong; Wang, Ning
year 2017
title A Comprehensive Application of BIM Modelling for Semi-underground Public Architecture: A Study for Tiantian Square Complex, Wuhan, China
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 297-308.
summary The paper presents research on how Building Information Modelling (BIM) can be applied comprehensively throughout the design of an architectural project. A practical method based on BIM models that help to deal with multidisciplinary issues by integrating the design information from different sources, collaborators and project stages is formulated by adopting existing available tools. The ‘Tiantian Square’ building project in Wuhan, China combines a subway station with a commercial hug. According to the project’s size and complexity, our study focuses on the multiple cooperation of professionals from different backgrounds, including the departments of architectural design, structure (civil engineering), HVAC (Heating, Ventilation and Air Conditioning), water supply and drainage, and electrics and sustainable design. Our paper presents how the BIM model bridges between various simulation platforms through our technical system and management, including steps of transformation, simplification, analysis, reaction and improvement. Our research has helped to improve the overall efficiency and quality of the project. We generated a successful analysis-design approach for the initial design stages, which does not require in-depth analysis. It is a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Finally, we discuss how the coordination of different department becomes a crucial factor as we look forward to a more open, communicative and inter-relational design and development process.
keywords BIM, Subway Complex, Simulation, Semi-Underground Architecture
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2017_210
id ecaade2017_210
authors Jimenez Garcia, Manuel, Soler, Vicente and Retsin, Gilles
year 2017
title Robotic Spatial Printing
doi https://doi.org/10.52842/conf.ecaade.2017.2.143
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 143-150
summary There has been significant research into large-scale 3D printing processes with industrial robots. These were initially used to extrude in a layered manner. In recent years, research has aimed to make use of six degrees of freedom instead of three. These so called "spatial extrusion" methods are based on a toolhead, mounted on a robot arm, that extrudes a material along a non horizontal spatial vector. This method is more time efficient but up to now has suffered from a number of limiting geometrical and structural constraints. This limited the formal possibilities to highly repetitive truss-like patterns. This paper presents a generalised approach to spatial extrusion based on the notion of discreteness. It explores how discrete computational design methods offer increased control over the organisation of toolpaths, without compromising design intent while maintaining structural integrity. The research argues that, compared to continuous methods, discrete methods are easier to prototype, compute and manufacture. A discrete approach to spatial printing uses a single toolpath fragment as basic unit for computation. This paper will describe a method based on a voxel space. The voxel contains geometrical information, toolpath fragments, that is subsequently assembled into a continuous, kilometers long path. The path can be designed in response to different criteria, such as structural performance, material behaviour or aesthetics. This approach is similar to the design of meta-materials - synthetic composite materials with a programmed performance that is not found in natural materials. Formal differentiation and structural performance is achieved, not through continuous variation, but through the recombination of discrete toolpath fragments. Combining voxel-based modelling with notions of meta-materials and discrete design opens this domain to large-scale 3D printing. Please write your abstract here by clicking this paragraph.
keywords discrete; architecture; robotic fabrication; large scale printing; software; plastic extrusion
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2017_086
id caadria2017_086
authors Koh, Immanuel, Keel, Paul and Huang, Jeffrey
year 2017
title Decoding Parametric Design Data - Towards a Heterogeneous Design Search Space Remix
doi https://doi.org/10.52842/conf.caadria.2017.117
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 117-126
summary Designers or Non-Designers are not able to effectively access, view, search, discover, collect, reuse, remix and share parametric design data (PDD) for either professional or educational purposes. PDD here refers to the meta-data of 3D models generated by visual dataflow modelling software packages used in CAD/CAM industry. This ineffectiveness is a direct consequence of the deliberately proprietary nature of most PDD file formats and the restricted use within their respective desktop-based software environments. This paper presents an initial software prototype capable of automating the process of decoding a commonly used PDD file format and then re-encoding it with new set of metrics to facilitate multiple PDD searchability, comparability and interoperability, via an integrated web interface querying a design data repository. All PDDs are conceptualized as genealogies of numerical or geometric transformations and explicitly encoded with a graph-based data structure. The goal is to eventually learn from its own big data and begin to artificially generate novel PDDs heterogeneously.
keywords Design Decoder; Design Space Exploration; Parametric Design; Visual Analytics; Design Data
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201715202
id ijac201715202
authors Koutamanis, Alexander
year 2017
title Briefing and Building Information Modelling: Potential for integration
source International Journal of Architectural Computing vol. 15 - no. 2, 120-133
summary The article brings together the subjects of briefing and Building Information Modelling. It considers the brief as information source for Building Information Modelling and Building Information Modelling as an environment for automating brief- related analysis and guidance. The approach is characterized by feedforward and feedback, incorporation of constraints from the brief in Building Information Modelling, connection of briefing goals to performance analysis and correlation of requirements in the brief to Building Information Modelling object properties and relations. To test the approach, 10 briefs are parsed into goals, constraints and requirements, which are then considered for integration in Building Information Modelling. As the majority of these items can become part of a model and subject to automated analyses, integration of briefing in Building Information Modelling is proposed as a viable option that can improve design and briefing performance but also signals significant changes to briefing.
keywords Briefing, Building Information Modelling, integration, continuity, feedforward, feedback, analysis
series other
type normal paper
email
last changed 2019/08/02 08:29

_id caadria2017_085
id caadria2017_085
authors Lee, Yong-Ju, Kim, Mi-Kyoung and Jun, Han-Jong
year 2017
title Green Standard for Energy and Environmental Design - The Development of an Assessment System Based on a Green BIM Template
doi https://doi.org/10.52842/conf.caadria.2017.623
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 623-632
summary To construct a building that meets the requirements of certification in terms of environmental friendliness, there must be a process that considers the certification criteria from the initial design phase. However, there are numerous complicated task performance procedures to analyse many required items in detail as well as perceive and apply the data requirements efficiently. Currently, Building Information Modeling (BIM) is gaining attention as a solution for environmental problems in architecture. BIM shows precisely how a virtual building is modelled in the real world, thereby providing an objective information and analysis through a simulation. However, the result values of BIM library or modelling may turn out differently as a result of the work environment of designers or users that is not standardized. Therefore, this study applies the modelled and extracted BIM data using the template and library established in the BIM add-in planning and design phase to review in advance the Green Standard for Energy and Environmental Design (G-SEED) assessment by item and manual input of users with the BIM-based (add-in) G-SEED assessment system, thereby providing support to enable users to establish specific strategies in designing green buildings.
keywords GBT; G-SEED; BIM System; BIM Add-in; Apartment
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2023_362
id caadria2023_362
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldabous, Rahaf, Aldaboos, Sarah and Lopez Rodriguez, Alvaro
year 2023
title Fabrication of Complex Clay Structures Through an Augmented Reality Assisted Platform
doi https://doi.org/10.52842/conf.caadria.2023.1.413
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 413–422
summary The relationship between clay manufacturing and architectural design has a long trajectory that has been explored since the early 2000s. From a 3D printing or assembly perspective, using clay in combination with automated processes in architecture to achieve computational design solutions is well established. (Yuan, Leach & Menges, 2018). Craft-based clay art, however, still lacks effective computational design integration. With the improvement of Augmented Reality (AR) technologies (Driscoll et al., 2017) and the appearance of digital platforms, new opportunities to integrate clay manufacturing and computational design have emerged. The concept of digitally transferring crafting skills, using holographic guidance and machine learning, could make clay crafting accessible to more workers while creating the potential to share and exchange digital designs via an open-source manufacturing platform. In this context, this research project explores the potential of integrating computational design and clay crafting using AR. Moreover, it introduces a platform that enables AR guidance and the digital transfer of fabrication skills, allowing even amateur users with no prior making experience to produce complex clay components.
keywords Computer vision, Distributed manufacturing, Augmented craftsmanship, Augmented reality, Real-time modification, Hololens
series CAADRIA
email
last changed 2023/06/15 23:14

_id acadia17_382
id acadia17_382
authors Melenbrink, Nathan; Kassabian, Paul; Menges, Achim; Werfel, Justin
year 2017
title Towards Force-aware Robot Collectives for On-site Construction
doi https://doi.org/10.52842/conf.acadia.2017.382
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 382- 391
summary Due to the irregular and variable environments in which most construction projects take place, the topic of on-site automation has previously been largely neglected in favor of off-site prefabrication. While prefabrication has certain obvious economic and schedule benefits, a number of potential applications would benefit from a fully autonomous robotic construction system capable of building without human supervision or intervention; for example, building in remote environments, or building structures whose form changes over time. Previous work using a swarm approach to robotic assembly generally neglected to consider forces acting on the structure, which is necessary to guarantee against failure during construction. In this paper we report on key findings for how distributed climbing robots can use local force measurements to assess aspects of global structural state. We then chart out a broader trajectory for the affordances of distributed on-site construction in the built environment and position our contributions within this research agenda. The principles explored in simulation are demonstrated in hardware, including solutions for force-sensing as well as a climbing robot.
keywords material and construction; physics; construction/robotics; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_946669 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002