CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 575

_id ecaade2017_181
id ecaade2017_181
authors Balaban, Özgün and Tunçer, Bige
year 2017
title Visualizing and Analising Urban Leisure Runs by Using Sports Tracking Data
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 533-540
doi https://doi.org/10.52842/conf.ecaade.2017.1.533
summary Recently there has been a significant growth on the usage of personal fitness applications running on smart phones or fitness devices. These applications record millions of GPS points generated from the paths of runners. This data can be analyzed to comprehend behavior of runners within a specific location. In this study, using data generated from several sources such as Endomondo and Strava and other complementary data such as climate data, population data etc., we aim to find out the factors affecting running behavior in urban settings. For this purpose, visualizations of running activities are plotted with different variables by using BIG-DID, a software tool we developed as part of this study. Additionally, an evaluation of the tools used or can be used for data analysis and visualizations discussed. Finally, a linear regression model is introduced, which will be further developed in later stages of this study.
keywords Big Data; Urban Visualization; Fitness Applications; Leisure Runs
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_234
id ecaade2017_234
authors Benetti, Alberto, Favargiotti, Sara and Ricci, Mos?
year 2017
title RE.S.U.ME. - REsilient and Smart Urban MEtabolism
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 1113-1120
doi https://doi.org/10.52842/conf.ecaade.2017.1.1113
summary New technologies and uncontrolled open-data policies lead public to a new way of approaching the built environment. To enlarge the competences of the professionals that work within the cities, we believe that providing a deep and dynamic knowledge on the heritage and urban built environment is the more effective solution to offer a unique support to the needs. By providing a boosted geographical database with detailed information about the status of each building, we aim to support the professional by providing a neat vision about vacant buildings available citywide. We think this knowledge is an important asset in covering every kind of public requests: from flat to rent to an abandoned building to restore or to drive better investors. The city of Trento will be the pilot project to test these statements.We studied the phenomenon of pushing new constructions rather investing on the reuse of abandoned buildings with the consequences of unsustainable land use. To address the work we adopted a comprehensive approach across the fields of urbanism, ICT engineering and social sciences. We believe that sharing knowledge and know-hows with municipalities, agencies, and citizens is the way to support better market strategies as well as urban transformation policies.
keywords Information Technology; Urban Metabolism; Re-cycle; Urban Reserves; Policy Decision-Making; Data-driven Analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2017_071
id sigradi2017_071
authors Bueno, Ernesto; Antônio Carlos de Quadros Gonçalves Neto, Caio Henrique Mehl
year 2017
title Análise de variações no desempeno lumínico do Centro Cívico de Curitiba através de modelagem e simulação paramétrica [Analysis of variations in daylight performance of the Curitiba Civic Center through parametric modeling and simulation]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.486-490
summary To ensure access to sunlight in urban planning, specialized software is available. Mainly used in the initial stages, these tools allow the study of the environmental performance of the proposal. However, neighborhood impact is seen as a secondary aspect, usually evaluated with GIS tools, simulating pre-existing or proposed situations. However, visual programming tools allow, data processing in addition to parametric modeling, streamlining the process of analysis of architectural and urban pre-existences and proposals. From a case study, we present a methodology that uses these tools to demonstrate the loss of daylight performance of open spaces due to urban densification.
keywords Urban daylight performance; Environmental performance simulation; Parametric urban modeling; Grasshopper.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_061
id ecaade2017_061
authors Castellari, Dario and Erioli, Alessio
year 2017
title Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 661-670
doi https://doi.org/10.52842/conf.ecaade.2017.1.661
summary Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.
keywords tectonics; combinatorics; unit-based system; branching network
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2017.685
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2017_164
id ecaade2017_164
authors De Luca, Francesco
year 2017
title From Envelope to Layout - Buildings Massing and Layout Generation for Solar Access in Urban Environments
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 431-440
doi https://doi.org/10.52842/conf.ecaade.2017.2.431
summary The use of daylight for the inhabitants health and comfort purposes and for the energy efficiency of buildings influences significantly the shape and outlook of urban environments. The solar envelope and solar collection surface are methods to define the massing of buildings for direct solar access requirements. They have been recently improved to be used in the design of buildings in relation to the Estonian daylight standard. Nevertheless the solar collection method can be applied only to single buildings with simple shape. The present research investigates the direct solar access performance of building clusters with multiple layouts in different urban areas in the city of Tallinn. Result show that different patterns perform in significant different ways whereas the same cluster types have the best and the least performances in all the cases.
keywords Urban design; Direct solar access; Solar envelope; Environmental analysis; Computational design
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_048
id ecaade2017_048
authors Dennemark, Martin, Schneider, Sven, Koenig, Reinhard, Abdulmawla, Abdulmalik and Donath, Dirk
year 2017
title Towards a modular design strategy for urban masterplanning - Experiences from a parametric urban design studio on emerging cities in Ethiopia
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-494
doi https://doi.org/10.52842/conf.ecaade.2017.1.485
summary In emerging countries there is a need for rapid urban planning, since they are confronted by unprecedented wave of urbanization. This need is even bigger since usually there is no adequate number of professional educated urban planners in these countries. Therefore, we investigate in this paper how to develop a set of methods that allow to generate urban fabric semi-automatically. The challenge is to come up with a generative planning model that adapts to multiple boundary conditions.Through a modular design strategy generative methods are applied by students in an urban design studio in order to combine them into more complex planning strategies for small cities in the emerging country of Ethiopia. The modular approach allows to break down planning into sub-issues to better deal with the overarching problem. For testing the implemented generative urban design strategies various cities are generated at different locations in Ethiopia with various topographic situations. Their underlying design strategies and modular approach are discussed in this paper.
keywords Urban Design; Planning Systems; Modules; Teaching; Emerging Country
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_101
id caadria2017_101
authors Dounas, Theodoros, Spaeth, Benjamin, Wu, Hao and Zhang, Chenke
year 2017
title Speculative Urban Types - A Cellular Automata Evolutionary Approach
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 313-322
doi https://doi.org/10.52842/conf.caadria.2017.313
summary The accelerated rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original 2-dimensional functionality into the realm of three dimensions and enriched with the possibility of resizing the involved cells according to their function. Moreover our method integrates the "social condenser" as a means of diversifying functional distribution within the Cellular Automata as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a ,yet limited, evaluation procedure including solar radiation which can be extended to other performance criteria in future work.
keywords integrated Speculation; Generative Urbanism; Cellular Automata
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2017_288
id ecaade2017_288
authors Emo, Beatrix, Treyer, Lukas, Schmitt, Gerhard and Hoelscher, Christoph
year 2017
title Towards defining perceived urban density
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 637-646
doi https://doi.org/10.52842/conf.ecaade.2017.2.637
summary The aim of the paper is to identify parameters that influence perceived urban density. Whilst it is standard for architects and planners to consider urban density, there is often no consideration of how individuals might perceive such density. We report the findings of a study in which participants rate photographs of urban scenes according to perceived urban density. The case study area is central Zurich, Switzerland. The images are analyzed according to six parameters: visibility, amount of buildings, street width, amount of sky, amount of green space, and amount of vehicles. We report the findings of where images were ranked along a scale from lowest to highest perceived urban density. Findings show that visibility alone is not enough to explain the rating of perceived urban density. The study is a first step towards reaching a definition of perceived urban density that can be applied to different urban contexts.
keywords urban density; perception; behavioural study; 3D reconstruction
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2017_255
id ecaade2017_255
authors Heinrich, Mary Katherine, Ayres, Phil and Bar-Yam, Yaneer
year 2017
title A Multiscale Model of Morphological Complexity in Cities - Characterising Emergent Homogeneity and Heterogeneity
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2017.2.561
summary Approaches from complex systems science can support design decision-making by extracting important information about key dependencies from large, unstructured data sources. This paper presents an initial case study applying such approaches to city structure, by characterising low-level features and aggregate properties of artifact morphology in urban areas. First, shape analysis is used to describe microscale artifact clusters, analysed in aggregate to characterise macroscale homogeneity and heterogeneity. The characterisation is used to analyse real-world example cities, from both historic maps and present-day crowdsourced data, testing against two performance evaluation criteria. Next, the characterisation is used to generate simple artificial morphologies, suggesting directions for future development. Finally, results and extensions are discussed, including real-world applications for decision support.
keywords Complex systems; morphology; shape analysis; urban planning
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2017_113
id caadria2017_113
authors Huang, Weixin, Lin, Yuming and Wu, Mingbo
year 2017
title Spatial-Temporal Behavior Analysis Using Big Data Acquired by Wi-Fi Indoor Positioning System
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 745-754
doi https://doi.org/10.52842/conf.caadria.2017.745
summary Understanding of people's spatial behavior is fundamental to architectural and urban design. However, traditional investigation methods applied in environmental behavior studies is highly limited regarding the amount of samples and regions it covers, which is not sufficient for the exploration of complex dynamic human behaviors and social activities in architectural space. Only recently the developments in indoor positioning system (IPS) and big data analysis technique have made it possible to conduct a full-time, full-coverage study on human environmental behavior. Among the variety IPS systems, the Wi-Fi IPS system is increasingly widely used because it is easy to be applied with acceptable cost. In this paper, we analyzed a 60-days anonymized data set, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. The analysis revealed interesting patterns on people's behavior besides temporal spatial distribution, ranging from the cyclical fluctuation in human flow to behavioral patterns of sub-regions, some of which are not easy to be identified and interpreted by the traditional field observation. Through this case study, behavioral data from IPS system has exhibited great potential in bringing about profound changes in the study of environmental behavior.
keywords environmental behavior study; Wi-Fi; indoor positioning system; big data; spatial temporal behavior; ski resort
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
doi https://doi.org/10.52842/conf.caadria.2020.1.873
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2017_095
id sigradi2017_095
authors Kirschner, Ursula
year 2017
title A Hermeneutic Interpretation of Concepts in a Cooperative Multicultural Working Project [A Hermeneutic Interpretation of Concepts in a Cooperative Multicultural Working Project]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.659-665
summary What are frontier zones in contemporary urban cities? This research project was developed in cooperation with an interdisciplinary group of researchers and students from Brazil and Germany and launched with an International Summer School in São Paulo in 2015. Its aim was to explore and invent urban spaces using the method of documentary film making as a medium to provide new insights and readings of the contemporary city. In Germany we analyzed these film productions by examining the main topics of the frontier zones in São Paulo. The method of documentary film making was once again chosen for the hermeneutic interpretation.
keywords Perception of space; documentary film making; hermeneutic analysis
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2017_051
id caadria2017_051
authors Liu, Yuezhong and Stouffs, Rudi
year 2017
title Familiar and Unfamiliar Data Sets in Sustainable Urban Planning
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 705-714
doi https://doi.org/10.52842/conf.caadria.2017.705
summary Achieving energy efficient urban planning requires a multi-disciplinary planning approach. The huge increase in data from sensors and simulations does not help to reduce the burden of planners. On the contrary, unfamiliar multi-disciplinary data sets can bring planners into a hopeless tangle. This paper applies semi-supervised learning methods to address such planning data issues. A case study is used to demonstrate the proposed method with respect to three performance issues: solar heat gains, natural ventilation and daylight. The result shows that the method addressing both familiar and unfamiliar data has the ability to guide the planner during the planning process.
keywords energy performance; S3VM; decision tree; familiar and unfamiliar.
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
doi https://doi.org/10.52842/conf.caadria.2018.2.297
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2017_083
id ecaade2017_083
authors Markusiewicz, Jacek and Krê¿lik, Adrian
year 2017
title Human-driven and machine-driven decisions in urban design and architecture - A comparison of two different methods in finding solutions to a complex problem
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 505-514
doi https://doi.org/10.52842/conf.ecaade.2017.1.505
summary The authors of the paper research the aspects of two approaches in human-computer collaboration to solve an urban scale problem: positioning a new cycling-pedestrian bridge in the city of Warsaw. The first approach is a machine-driven stochastic optimization combined with the shortest walk algorithm; the second one is a human-centered process involving an interactive table as a way of communication and data input. Both approaches were explored as part of a one-week student workshop. The article covers the undertaken techniques in detail and presents the outcomes of both studies. It concludes with a reflection on the necessity to inspire a discussion about the future of the architecture among apprentices of the profession: with all the potential threats and opportunities deriving from computer automation.
keywords interface; TUI; optimization; PSO; generative design; programming
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2017_232
id ecaade2017_232
authors Ostrowska-Wawryniuk, Karolina, Markusiewicz, Jacek and S³yk, Jan
year 2017
title Descriptive Geometry 2.0 - Define vs. design
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 425-430
doi https://doi.org/10.52842/conf.ecaade.2017.2.425
summary The article presents the 'Digital Geometry Techniques' course taught at the second year of the undergraduate course at the Faculty of Architecture in the Warsaw University of Technology - WUT. The course introduces mathematical theory and generative modeling in order to prepare the students to consciously plan their creative process and to choose the set of tools according to an initial analysis of modeling constraints. The students gain knowledge on advanced CAAD techniques through learning functions of a particular program, and also by tackling geometry-related problems derived from real-world architectural projects. They are able to develop individual solutions using adequate techniques. We present three different students' semester works as examples to reflect on the significance of mathematics and algorithmization in the process of problem solving and form creation in architecture and urban design.
keywords project based learning; generative design; architectural curriculum; conceptual thinking; geometry; programming
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_066
id ecaade2017_066
authors Panagoulia, Eleanna
year 2017
title The role of Open Data in identifying and evaluating the Livability of Urban Space - Importance and Method
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 495-504
doi https://doi.org/10.52842/conf.ecaade.2017.1.495
summary The past decade has experienced a staggering rise of data-aided analysis that facilitate understanding the impact of socio-economic flux and socially oriented activities towards the quality and livability of space. Evaluating urban environments is not only important from the planners' perspective, but has larger implications for the residents themselves. In this paper we argue that the livability of a city or a neighborhood is not necessarily described by conventional, authoritative data, such as income, crime, education level etc., but the combination with ephemeral data layers, related to human perception and desire, can be more effective in capturing the dynamics of space. Implementing methods that are considered disassociated with urban analytics, we attempt to go beyond the conventions in understanding the dynamics that drive socio-economic phenomena and construct lived space. Our objective is to create methodologies of anticipating and evaluating urban environment by re-patterning different datasets and taking advantage of their combinatory potential.
keywords Livability; Data-aided Analysis; Open Data; Human Factor
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_26999 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002