CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 574

_id sigradi2017_072
id sigradi2017_072
authors Amaral de Andrade, Bruno; Camila Marques Zyngier, Camila Marques Zyngier, Ana Clara Mourão Moura
year 2017
title Roteiro Metodológico para Gamificação do Geodesign Aplicado ao Planejamento Urbano: Por uma Experiência Lúdica no Projeto de Futuros Alternativos para a Cidade com Crianças [Methodological Guide for the Gamification of Geodesign Applied to Urban Planning: For a Ludic Experience on the Project of Alternative Futures for the City with Children]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.491-495
summary This article aims to present a Methodological Guide to add gamification elements to the Geodesign framework when planning the future of the city, using Geogames such Minecraft, with the participation of children in Tirol, in Brazil. The problematic tackled is related to the challenges that participants of a Geodesign workshop face when co-designing projects as alternative futures for the territory, such as losing engagement and involvement. To support the participants overcome these challenges we incorporate playfulness into the some of the Geodesign workshop phases enhancing geovisualization, collaboration and cognition.
keywords Geodesign; Geogames; Geovisualization; Participatory Planning; Chindren’s Design.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id cf2017_567
id cf2017_567
authors Kim, Ikhwan; Lee, Injung; Lee, Ji-Hyun
year 2017
title The Expansion of Virtual Landscape in Digital Games: Classification of Virtual Landscapes Through Five principles
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 567-584.
summary This research established classification system which contains five principles and variables to classify the types of the virtual landscape in digital games. The principles of the classification are Story, Space Shape, Space and Action Dimension, User Complexity and Interaction Level. With this classification system, our research group found the most representative types of virtual landscape in the digital game market through 1996 to 2016. Although mathematically there can be 288 types of virtual landscape, only 68 types have been used in the game market in recent twenty years. Among the 68 types, we defined 3 types of virtual landscape as the most representative types based on the growth curve and a number of cases. Those three representative types of virtual landscapes are Generating / Face / 3D-3D / Single / Partial, Providing / Chain / 3D-3D / Single / Partial and Providing / Linear / 2D-2D / Single / Partial. With the result, the researchers will be able to establish the virtual landscape design framework for the future research.
keywords Digital Game, Virtual Landscape, Game Design, Game Classification
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_492
id cf2017_492
authors Kocabay, Serkan; Alaçam, Sema
year 2017
title Algorithm Driven Design: Comparison of Single-Objective and Multi-Objective Genetic Algorithms in the Context of Housing Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 492-508.
summary This paper aims to present a dynamic multi objective genetic algorithm (MOGA) framework for the purpose of generating 3D mass models in the context of housing design. The proposed MOGA framework contains static and dynamic modules such as regulations, environmental condition analysis as static, behavioral models, designer-specified goals, domain-specific goals based on building types as dynamic modules. Moreover comparison of two algorithmic approaches, implementation of a single and multiple objective genetic algorithms are compared in terms of variety and usability of the generated design solutions, fitness approximation performances and the speed of the algorithms (running time). In the scope of this study, the potentials andlimitations of the proposed MOGA framework in 3D form generation, its advantages over single objective genetic algorithm are discussed, conducted with a case study.
keywords Multi-objective, Genetic Algorithm, Housing Design, Mass-model
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_124
id ecaade2017_124
authors Pantazis, Evangelos and Gerber, David
year 2017
title Emergent order through swarm fluctuations - A framework for exploring self-organizing structures using swarm robotics
doi https://doi.org/10.52842/conf.ecaade.2017.1.075
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 75-84
summary In modern architecture, construction processes are based on top down planning, yet in nature but also in vernacular architecture, the shape of shelters/nests is the result of evolutionary material processes which takes place without any global coordination or plan. This work presents a framework for exploring how self-organizing structures can be achieved in a bottom up fashion by implementing a swarm of simple robots(bristle bots). The robots are used as a hardware platform and operate in a modular 2D arena filled with differently shaped passive building blocks. The robots push around blocks and their behaviour can be programmed mechanically by changing the geometry of their body. Through physical experimentation and video analysis the relationships between the properties of the emergent patterns (size, temporal stability) and the geometry of the robot/parts are studied. This work couples a set of agent based design tools with a robust robotic system and a set of analysis tools for generating and actualising emergent 2D structures.
keywords Multi Agent Systems; Generative Design; Swarm Robotics; Self-organizing patterns
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2017_091
id ecaade2017_091
authors Schubert, Gerhard, Bratoev, Ivan and Petzold, Frank
year 2017
title Visual Programming meets Tangible Interfaces - Generating city simulations for decision support in early design stages
doi https://doi.org/10.52842/conf.ecaade.2017.1.515
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 515-522
summary The utilization of visual programming languages (VPL) as tools for generating complex simulations has seen a constant increase in application in architect planning phases. The major advantage of such languages is, that they enable the user to create programs without needing traditional software development skills. In the last few years the CDP // Collaborative Design Platform was developed that seamlessly connects physical models with analyses and simulations in real-time. To facilitate an easier creation, modification and user interaction with the individual simulations, a VPL and an accompanying IDE were conceptualized and developed. In the context of this paper the core requirements, the concept and prototypical implementation of these new components are described in detail.
keywords visual programming language; tangible interface; simulation; urban planning
series eCAADe
email
last changed 2022/06/07 07:57

_id ijac201715201
id ijac201715201
authors Weizmann, Michael; Oded Amir and Yasha Jacob Grobman
year 2017
title Topological interlocking in architecture: A new design method and computational tool for designing building floors
source International Journal of Architectural Computing vol. 15 - no. 2, 107-118
summary This article presents a framework for the design process of structural systems based on the notion of topological interlocking. A new design method and a computational tool for generating valid architectural topological interlocking geometries are discussed. In the heart of the method are an algorithm for automatically generating valid two-dimensional patterns and a set of procedures for creating several types of volumetric blocks based on the two-dimensional patterns. Additionally, the computational tool can convert custom sets of closed planar curves into structural elements based on the topological interlocking principle. The method is examined in a case study of a building floor. The article concludes with discussions on the potential advantages of using the method for architectural design, as well as on challenging aspects of further development of this method toward implementation in practice.
keywords Parametric design, topological interlocking, form generation, structural floor system
series other
type normal paper
email
last changed 2019/08/02 08:29

_id acadia17_82
id acadia17_82
authors Andreani, Stefano; Sayegh, Allen
year 2017
title Augmented Urban Experiences: Technologically Enhanced Design Research Methods for Revealing Hidden Qualities of the Built Environment
doi https://doi.org/10.52842/conf.acadia.2017.082
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 82-91
summary The built environment is a complex juxtaposition of static matter and dynamic flows, tangible objects and human experiences, physical realities and digital spaces. This paper offers an alternative understanding of those dichotomies by applying experimental design research strategies that combine objective quantification and subjective perception of urban contexts. The assumption is that layers of measurable datasets can be afforded with personal feedback to reveal "hidden" characteristics of cities. Drawing on studies from data and cognitive sciences, the proposed method allows us to analyze, quantify and visualize the individual experience of the built environment in relation to different urban qualities. By operating in between the scientific domain and the design realm, four design research experiments are presented. Leveraging augmenting and sensing technologies, these studies investigate: (1) urban attractors and user attention, employing eye-tracking technologies during walking; (2) urban proxemics and sensory experience, applying proximity sensors and EEG scanners in varying contexts; (3) urban mood and spatial perception, using mobile applications to merge tangible qualities and subjective feelings; and (4) urban vibe and paced dynamics, combining vibration sensing and observational data for studying city beats. This work demonstrates that, by adopting a multisensory and multidisciplinary approach, it is possible to gain a more human-centered, and perhaps novel understanding of the built environment. A lexicon of experimented urban situations may become a reference for studying different typologies of environments from the user experience, and provide a framework to support creative intuition for the development of more engaging, pleasant, and responsive spaces and places.
keywords design methods; information processing; art and technology; hybrid practices
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_173
id ecaade2017_173
authors Buš, Peter, Hess, Tanja, Treyer, Lukas, Knecht, Katja and Lu, Hangxin
year 2017
title On-site participation linking idea sketches and information technologies - User-driven Customised Environments
doi https://doi.org/10.52842/conf.ecaade.2017.1.543
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 543-550
summary The paper introduces the methodology related to the topic of citizen-driven urban design and revises the idea of on-site participation of end-users, which could prospectively lead to customisation of architectural and urban space in a full-scale. The research in the first phase addresses the engagement of information technologies used for idea sketching in participatory design workshop related to local urban issues in the city of Chur in Switzerland by means of the Skity tool, the sketching on-line platform running on all devices. Skity allows user, which can be individual citizens or a community, to sketch, build, and adapt their ideas for the improvement of an urban locality. The participant is the expert of the locality because he or she lives in this place every day. The content of this paper is focused on the participatory design research project conducted as a study at the ETH Zürich and the Hochschule für Technik und Wirtschaft HTW in Chur in collaboration with Future Cities Laboratory in Singapore, mainly concentrated on the first step of the methodological approach introduced here.
keywords responsive cities; urban mass-customisation; idea sketching; ideation; on-site participation; citizen design science
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2017_057
id caadria2017_057
authors Buš, Peter, Treyer, Lukas and Schmitt, Gerhard
year 2017
title Urban Autopoiesis - Towards Adaptive Future Cities
doi https://doi.org/10.52842/conf.caadria.2017.695
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 695-704
summary A city, defined as a unity of inhabitants with their environment and showing self-creating and self-maintaining properties, can be considered as an autopoietic system if we take into account its bottom-up processes with unpredictable behaviour of its components. Such a property can lead to self-creation of urban patterns. These processes are studied in well-known vernacular architectures and informal settlements around the world and they are able to adapt according to various conditions and forces. The main research objective is to establish a computational design-modelling framework for modelling autopoietic intricate characteristics of a city based on an adaptability, self-maintenance and self-generation of urban patterns with adequate visual representation.The paper introduces a modelling methodology that allows to combine planning tasks with inhabitants' interaction and data sources by using an interchange framework to model more complex urban dynamics. The research yields preliminary results tested in a simulation model of a redevelopment of Tanjong Pagar Waterfront, the container terminal in the city of Singapore being transformed into a new future centre as a conducted case study.
keywords Urban Metabolism; Urban Autopoiesis; Computational Interchange; Emergent Urban Strategies; Adaptive City
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
doi https://doi.org/10.52842/conf.caadria.2019.2.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2017_065
id sigradi2017_065
authors Marques Zyngier, Camila; Ana Clara Mourão Moura, Suellen Roquete Ribeiro
year 2017
title O Geodesign como plataforma para co-design: Estudo de Caso Maria Tereza [Geodesign as a platform for co-design: The Case Study of Maria Tereza]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.441-447
summary Belo Horizonte currently has several areas of social interest, which present irregular occupation and a lack of infrastructure. This scenario demands methodologies that can quickly respond to the main problems of the many areas, and that also contemplates a participatory planning. In this context, the article presents a Geodesign study conducted by the City Hall with the goal of evaluating the suitability of the methodology as a reference in the process of participatory planning for technicians and the population. It used a pilot area, called Maria Tereza, which is a relatively recent occupation located in the Northeastern region of the municipality.
keywords Geodesign, GIS, Co-design, Collaborative e Collective Design, Participatory Planning.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_228
id ecaade2017_228
authors Pihlajaniemi, Henrika, Luusua, Anna, Sarjanoja, Esa-Matti, Vääräniemi, Risto, Juntunen, Eveliina and Kourunen, Sini
year 2017
title SenCity City Monitor as a platform for user involvement, innovation and service development
doi https://doi.org/10.52842/conf.ecaade.2017.1.561
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 561-570
summary Urban dashboards visualize information about the measured performance, structure, patterns and trends of cities. This paper introduces a concept of urban dashboard as a platform for participation, research, and service development. We present and reflect the development process of the City Monitor, which is a test version of an urban dashboard for the pilot cities participating in the SenCity project. The paper describes and reflects on the concept, structure, and content of the City Monitor and its participatory and iterative development process, through a case study. The case study encompasses a pilot implementation of the dashboard concept in a context of a housing area in the Finnish city of Salo, where intelligent roadway lighting was tested.
keywords city dashboard; intelligent lighting; pilot; participation; simulation
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id acadia17_630
id acadia17_630
authors Vasanthakumar, Saeran; Saha, Nirvik; Haymaker, John; Shelden, Dennis
year 2017
title Bibil: A Performance-Based Framework to Determine Built Form Guidelines
doi https://doi.org/10.52842/conf.acadia.2017.630
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 630- 639
summary City built-form guidelines act as durable constraints on building design decisions. Such guidelines directly impact energy, comfort and other performance conditions. Existing urban design and planning methods only consider a narrow range of potential design scenarios, with rudimentary performance criteria, resulting in suboptimal urban designs. Bibil is a software plugin for the Rhinoceros3D/Grasshopper3D CAD modeler that addresses this gap through the synthesis of design space exploration methods to help design teams optimize guidelines for environmental and energy performance criteria over the life cycle of the city. Bibil consists of three generative and data management modules. The first module simulates development scenarios from street and block information through time, the second designs appropriate architectural typology, and the third abstracts the typologies into a lightweight analysis model for detailed thermal load and energy simulation. State-of-the-art performance simulation is done via the Ladybug Analysis Tools Grasshopper3D plugin, and further bespoke analysis to explore the resulting design space is achieved with custom Python scripts.This paper first introduces relevant background for automated exploration of urban design guidelines. Then the paper surveys the state-of-the-art in design and performance simulation tools in the urban domain. Next the paper describes the beta version of the tool’s three modules and its application in a built form study to assess urban canyon performance in a major North American city. Bibil enables the exploration of a broader range of potential design scenarios, for a broader range of performance criteria, over a longer period of time.
keywords design methods; information processing; simulation & optimization; form finding; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_033
id ecaade2017_033
authors Yan, Wei
year 2017
title WP-BIM: Web-based Parametric BIM Towards Online Collaborative Design and Optimization
doi https://doi.org/10.52842/conf.ecaade.2017.2.527
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 527-534
summary We present initial experiments of Web-based Parametric Building Information Modeling (WP-BIM) towards collaborative design, modeling, simulation, and optimization. A new framework that integrates Web-based information technology (WebGL graphics, networking, and Web browsers), and design computing technology (visual programming) into parametric BIM is prototyped for the experiments. The integration of Web technology is going to enable online collaborative and user participatory design. Connected through the Web platform, a BIM model, visual programming-based user interfaces for parametric changes, and an optimization algorithm, which may reside in different servers or local computers in different geographical locations, have the potential to be integrated and working together to resolve design optimization problems, especially if combined with cloud-based performance simulation tools. After future development, this may allow architects, engineers, clients, etc. to collaboratively work on a project with up-to-date building data and different design and simulation tools.
keywords Web-based; Parametric Modeling; BIM; Collaborative Design; Optimization
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2017_133
id ecaade2017_133
authors Ashrafi, Negar and Duarte, José Pinto
year 2017
title A shape-grammar for double skin facades - A basis for generating context sensitive facades solution
doi https://doi.org/10.52842/conf.ecaade.2017.2.471
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 471-476
summary Double skin façade (DSF) is considered one of the best envelope systems in terms of energy efficiency. However, designing an energy efficient DSF system depends on different factors, such as climate, DSF shape and how the air flows in that system. This study presents a methodology to assist design decisions regarding the DSFs shapes. For this purpose, shape grammars was used as a generative design system to generate alternative DSF shape designs. Results of this study can be integrated with an energy simulation tools to calculate the energy demand of each design and consequently design the most efficient DSF system for each context.
keywords building envelope design; double skin façade; generative design system; shape grammars
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2017_225
id cf2017_225
authors De Luca, Francesco; Voll, Hendrik
year 2017
title Solar Collection Multi-isosurface Method: Computational Design Advanced Method for the Prediction of Direct Solar Access in Urban Environments
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 225.
summary Direct solar access and daylight requirements contribute significantly when it comes to shaping the layout and appearance of contemporary cities. Urban planning regulations in Estonia set the minimum amount of direct solar access that existing housing has the right to receive and new premises are required to get when new developments are built. The solar envelope and solar collection methods are used to define the volume and shape of new buildings that allow the due solar rights to the surrounding buildings, in the case of the former, and the portion of the own façades that receive the required direct solar access, in the case of the latter. These methods have been developed over a period of several decades, and present-day CAAD and environmental analysis software permits the generation of solar envelopes and solar collection isosurfaces, although they suffer from limitations. This paper describes an advanced method for generating solar collection isosurfaces and presents evidence that it is significantly more efficient than the existing method for regulation in Estonia’s urban environments.
keywords Urban planning, Direct solar access, Solar envelope, Solar collection, Computational design, Environmental design
series CAAD Futures
email
last changed 2017/12/01 14:38

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_405943 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002