CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id caadria2017_042
id caadria2017_042
authors Coorey, Ben and Coorey, Anycie
year 2017
title Generating Urban Form
doi https://doi.org/10.52842/conf.caadria.2017.261
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 261-269
summary Modern design of urban forms is venturing towards performative, site-specific architecture that are formed according to the attributes of its urban context. Parametric modelling techniques offer designers the ability to embed generative mechanisms into the design process to allow performance based design. This paper focuses on the development of a synthesis model that generates an Urban Form schema using computational design principles. The design system illustrates a rule-based systematic approach to urban form generation and is a precursor to the automatic exploration of urban forms based on design analytics and evaluation of urban metrics. The role of the architect begins to shift from the designer of objects to the designer of processes with urban planning following a trajectory of data-generated and contextual specific design.
keywords Parametric Modelling; Urban Modelling; Scripting; Urban Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_058
id caadria2017_058
authors Miao, Yufan, Koenig, Reinhard, Buš, Peter, Chang, Mei-Chih, Chirkin, Artem and Treyer, Lukas
year 2017
title Empowering Urban Design Prototyping   - A Case Study in Cape Town with Interactive Computational Synthesis Methods 
doi https://doi.org/10.52842/conf.caadria.2017.407
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 407-416
summary Although Cape Town city in South Africa is generally regarded as the most stable and prosperous city in the region, there are still approximately 7.5 million people living in informal settlements and about 2.5 million housing units are needed. This motivates the so-called Empower Shack project, aiming to develop upgrading strategies for these informal settlements. To facilitate the fulfillment of this project, urban design prototyping tools are researched and developed with the capabilities for fast urban design synthesis. In this paper we present a computational method for fast interactive synthesis of urban planning prototypes. For the generation of mock-up urban layouts, one hierarchical slicing structure, namely, the slicing tree is introduced to abstractly represent the parcels, as an extension of the existing generative method for street network. It has been proved that our methods can interactively assist the urban planning process in practice. However, the slicing tree data structure has several limitations that hinder the further improvement of the generated urban layouts. In the future, the development of a new data structure is required to fulfill urban synthesis for urban layout generation with Evolutionary Multi-objective Optimization methods and evaluation strategies should be developed to verify the generated results.
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2017_101
id caadria2017_101
authors Dounas, Theodoros, Spaeth, Benjamin, Wu, Hao and Zhang, Chenke
year 2017
title Speculative Urban Types - A Cellular Automata Evolutionary Approach
doi https://doi.org/10.52842/conf.caadria.2017.313
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 313-322
summary The accelerated rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original 2-dimensional functionality into the realm of three dimensions and enriched with the possibility of resizing the involved cells according to their function. Moreover our method integrates the "social condenser" as a means of diversifying functional distribution within the Cellular Automata as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a ,yet limited, evaluation procedure including solar radiation which can be extended to other performance criteria in future work.
keywords integrated Speculation; Generative Urbanism; Cellular Automata
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2017_648
id cf2017_648
authors Dounas, Theodoros; Spaeth, A. Benjamin; Wu, Hao; Zhang, Chenke
year 2017
title Dense Urban Typologies and the Game of Life: Evolving Cellular Automata
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 648-666.
summary The ongoing rate of urbanization in China is the motivator behind this paper. As a response to the observed monotonous housing developments in Suzhou Industrial Park (SIP) and elsewhere our method exploits Cellular Automata (CA) combined with fitness evaluation algorithms to explore speculatively the potential of existing developments and respective building regulations for increased density and diversity through an automated design algorithm. The well-known Game of Life CA is extended from its original 2-dimensional functionality into the realm of three dimensions and enriched with the opportunity of resizing the involved cells according to their function. Moreover our method integrates an earlier technique of constrcuctivists namely the “social condenser” as a means of diversifying functional distribution within the Cellular Automata as well as solar radiation as requested by the existing building regulation. The method achieves a densification of the development from 31% to 39% ratio of footprint to occupied volume whilst obeying the solar radiation rule and offering a more diverse functional occupation. This proof of concept demonstrates a solid approach to the automated design of housing developments at an urban scale with a ,yet limited, evaluation procedure including solar radiation which can be extended to other performance criteria in future work.
keywords Evolutionary Design, Generative Urbanism, Integrated Strategy
series CAAD Futures
email
last changed 2017/12/01 14:38

_id sigradi2017_099
id sigradi2017_099
authors Panagoulia, Eleanna
year 2017
title Human – Centered Approaches in Urban Analytics and Placemaking
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.692-698
summary Planning for resilience and enabling positive design outcomes requires combinatory methods of working with data, in order to assist decision-makers develop evidence-based methodologies and easily communicated scenarios. The staggering rise of technology integration and data-aided analysis tools in urban planning, not only facilitates our understanding of socio-economic flux, but attempts to actively involve users as a way of creating environments that are more responsive and appropriate to their needs. This paper aims to contribute to the discourse on user involvement in design-oriented fields, in our case, urban planning, by analyzing two different approaches of participatory design.
keywords User-Centric Design; Open-Data; Participation; Evaluation; ‘Reblock’
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2017_057
id caadria2017_057
authors Buš, Peter, Treyer, Lukas and Schmitt, Gerhard
year 2017
title Urban Autopoiesis - Towards Adaptive Future Cities
doi https://doi.org/10.52842/conf.caadria.2017.695
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 695-704
summary A city, defined as a unity of inhabitants with their environment and showing self-creating and self-maintaining properties, can be considered as an autopoietic system if we take into account its bottom-up processes with unpredictable behaviour of its components. Such a property can lead to self-creation of urban patterns. These processes are studied in well-known vernacular architectures and informal settlements around the world and they are able to adapt according to various conditions and forces. The main research objective is to establish a computational design-modelling framework for modelling autopoietic intricate characteristics of a city based on an adaptability, self-maintenance and self-generation of urban patterns with adequate visual representation.The paper introduces a modelling methodology that allows to combine planning tasks with inhabitants' interaction and data sources by using an interchange framework to model more complex urban dynamics. The research yields preliminary results tested in a simulation model of a redevelopment of Tanjong Pagar Waterfront, the container terminal in the city of Singapore being transformed into a new future centre as a conducted case study.
keywords Urban Metabolism; Urban Autopoiesis; Computational Interchange; Emergent Urban Strategies; Adaptive City
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2017_084
id cf2017_084
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Generation of Semantic 3D City Models from Conceptual Massing Models
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 84-100.
summary We present a workflow to automatically generate semantic 3D city models from conceptual massing models. In the workflow, the massing design is exported as a Collada file. The auto-conversion method, implemented as a Python library, identifies city objects by analysing the relationships between the geometries in the Collada file. For example, if the analysis shows that a closed poly surface satisfies certain geometrical relationships, it is automatically converted to a building. The advantage of this workflow is that no extra modelling effort is required, provided the designers are consistent in the geometrical relationships while modelling their massing design. We will demonstrate the feasibility of the workflow using three examples of increasing complexity. With the success of the demonstrations, we envision the utoconversion of massing models into semantic models will facilitate the sharing of city models between domain-specific experts and enhance communications in the urban design process.
keywords Interoperability, GIS, City Information Modelling, Conceptual Urban Design, Collaborative Urban Design Process
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
doi https://doi.org/10.52842/conf.acadia.2017.212
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2017_164
id ecaade2017_164
authors De Luca, Francesco
year 2017
title From Envelope to Layout - Buildings Massing and Layout Generation for Solar Access in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2017.2.431
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 431-440
summary The use of daylight for the inhabitants health and comfort purposes and for the energy efficiency of buildings influences significantly the shape and outlook of urban environments. The solar envelope and solar collection surface are methods to define the massing of buildings for direct solar access requirements. They have been recently improved to be used in the design of buildings in relation to the Estonian daylight standard. Nevertheless the solar collection method can be applied only to single buildings with simple shape. The present research investigates the direct solar access performance of building clusters with multiple layouts in different urban areas in the city of Tallinn. Result show that different patterns perform in significant different ways whereas the same cluster types have the best and the least performances in all the cases.
keywords Urban design; Direct solar access; Solar envelope; Environmental analysis; Computational design
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_225
id cf2017_225
authors De Luca, Francesco; Voll, Hendrik
year 2017
title Solar Collection Multi-isosurface Method: Computational Design Advanced Method for the Prediction of Direct Solar Access in Urban Environments
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 225.
summary Direct solar access and daylight requirements contribute significantly when it comes to shaping the layout and appearance of contemporary cities. Urban planning regulations in Estonia set the minimum amount of direct solar access that existing housing has the right to receive and new premises are required to get when new developments are built. The solar envelope and solar collection methods are used to define the volume and shape of new buildings that allow the due solar rights to the surrounding buildings, in the case of the former, and the portion of the own façades that receive the required direct solar access, in the case of the latter. These methods have been developed over a period of several decades, and present-day CAAD and environmental analysis software permits the generation of solar envelopes and solar collection isosurfaces, although they suffer from limitations. This paper describes an advanced method for generating solar collection isosurfaces and presents evidence that it is significantly more efficient than the existing method for regulation in Estonia’s urban environments.
keywords Urban planning, Direct solar access, Solar envelope, Solar collection, Computational design, Environmental design
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_001
id caadria2017_001
authors He, Yi, Schnabel, Marc Aurel, Chen, Rong and Wang, Ning
year 2017
title A Parametric Analysis Process for Daylight Illuminance - The Influence of Perforated Facade Panels on the Indoor Illuminance
doi https://doi.org/10.52842/conf.caadria.2017.417
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 417-424
summary BIM modelling systems and graph-based modelling systems have been widely used in the architecture design process recently. Based on the systems, an alternative approach to study the influence of perforated façade panels on the indoor illuminance by using a parametric performance analysis in a practical architectural project is proposed. The workflow we developed makes the modelling process faster, more accurate, and easier to modify. From the circulation of modelling-to-analysis process, the performance can be compared, feedback can be generated. Accordingly, optimized design can be concluded. This study suggests an analysis method to evaluate the indoor illuminance performance in the early design stages. The simulation is not a conventional typical in-depth one, but a practical method to immediately evaluate the performance for each design alternative and provide guidelines for design modification. Moreover, the first generation of digital modeling programs allow designers to conceive new forms, and allow these forms to be controled and realized. It reacts to the conference theme by presenting a protocol for a digital workflow in the early stage of the design development.
keywords Daylight illuminance; BIM; parametric sustainability; parametric modelling; facade panels
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2017_105
id caadria2017_105
authors Janssen, Patrick
year 2017
title Evolutionary Urbanism - Exploring Form-based Codes Using Neuroevolution Algorithms
doi https://doi.org/10.52842/conf.caadria.2017.303
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 303-312
summary Form-Based Codes are legal regulations adopted by local government that allow specific urban forms to be achieved. Such codes have a significant impact on the performative potential of the urban environment. This paper explores the possibility of using a neuroevolution algorithm to elucidate the complex relationship between Form-based Codes and their performative potential. More specifically, Compositional Pattern Producing Networks (CPPN) are used to generate parameter fields, which then drive the generation of varied urban models. For evolving the CPPN networks, a neuroevolution algorithm is used, called Neuroevolution of Augmenting Topologies (NEAT). In order to test the feasibility of the proposed approach, an abstract experiment is described in which a population of urban models are evolved, optimising a set of performance criteria related to the vista and location of the residential units.
keywords Form-based codes; evolutionary design; neural networks; neuroevolution; urban planning
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_308
id acadia17_308
authors Joyce, Sam Conrad; Ibrahim, Nazim
year 2017
title Exploring the Evolution of Meta Parametric Models
doi https://doi.org/10.52842/conf.acadia.2017.308
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 308- 317
summary Parametric associative logic can describe complex design scenarios but are typically non-trivial and time consuming to develop. Optimization is being widely applied in many fields to find high-performing solutions to objective design needs, and this is being extended further to include user input to satisfy subjective preferences. However, whilst conventional optimization approaches can set good parameters for a model, they cannot currently improve the underlying logic defined by the associative topology of the model, leaving it limited to predefined domain of designs. This work looks at the application of Cartesian Genetic Programming (CGP) as a method for allowing the automatic generation, combination and modification of valid parametric models, including topology. This has value as it allows for a much greater range of solutions, and potentially computational "creativity," as it can develop unique and surprising solutions. However, the application of a genome-based definition and evolutionary optimization, respectively, to describe parametric models and develop better models for a problem, introduce many unknowns into the model generation process. This paper explains CGP as applied to parametric design and investigates the difference between using mating, mutating and both strategies together as a way of combining aspects of parent models, under selection by a genetic algorithm under random, objective and user (Interactive GA) preferences. We look into how this effects the resultant overiterated interaction in relation to both the geometry and the parametric model.
keywords design methods; information processing; generative system; data visualization; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 07:52

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_110
id cf2017_110
authors Koenig, Reinhard; Miao, Yufan; Knecht, Katja; Bus, Peter; Mei-Chih, Chang
year 2017
title Interactive Urban Synthesis: Computational Methods for Fast Prototyping of Urban Design Proposals
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 110.
summary In this paper, we present a method for generating fast conceptual urban design prototypes. We synthesize spatial configurations for street networks, parcels and building volumes. Therefore, we address the problem of implementing custom data structures for these configurations and how the generation process can be controlled and parameterized. We exemplify our method by the development of new components for Grasshopper/Rhino3D and their application in the scope of selected case studies. By means of these components, we show use case applications of the synthesis algorithms. In the conclusion, we reflect on the advantages of being able to generate fast urban design prototypes, but we also discuss the disadvantages of the concept and the usage of Grasshopper as a user interface.
keywords Procedural grammars, Artificial intelligence in design, Urban synthesis, Generative design, Grasshopper plugin, Cognitive design computing
series CAAD Futures
email
last changed 2017/12/01 14:37

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
doi https://doi.org/10.52842/conf.caadria.2018.2.165
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia17_552
id acadia17_552
authors Sjoberg, Christian; Beorkrem, Christopher; Ellinger, Jefferson
year 2017
title Emergent Syntax: Machine Learning for the Curation of Design Solution Space
doi https://doi.org/10.52842/conf.acadia.2017.552
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 552- 561
summary The expanding role of computational models in the process of design is producing exponential growth in parameter spaces. As designers, we must create and implement new methods for searching these parameter spaces, considering not only quantitative optimization metrics but also qualitative features. This paper proposes a methodology that leverages the pattern modeling properties of artificial neural networks to capture designers' inexplicit selection criteria and create user-selection-based fitness functions for a genetic solver. Through emulation of learned selection patterns, fitness functions based on trained networks provide a method for qualitative evaluation of designs in the context of a given population. The application of genetic solvers for the generation of new populations based on the trained network selections creates emergent high-density clusters in the parameter space, allowing for the identification of solutions that satisfy the designer’s inexplicit criteria. The results of an initial user study show that even with small numbers of training objects, a search tool with this configuration can begin to emulate the design criteria of the user who trained it.
keywords design methods; information processing; AI; machine learning; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2017_003
id ecaade2017_003
authors Yu, Kuai, Haeusler, M. Hank and Fabbri, Alessandra
year 2017
title Parametric master planning via topological analysis using GIS data
doi https://doi.org/10.52842/conf.ecaade.2017.1.429
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 429-438
summary This paper discusses parametricism in regards to urban planning and infrastructure. The objective is to bridge GIS data (using FLUX) and the parametric design process together into urban master planning. Creating a tool which generates the infrastructure and grid system automatically using specified manual user inputs, allowing for further generation of 3D forms from the block patterns. It also critically analyses the traditional master planning approach of grid system division in regards to topography, and how classical urban designers did not consider topographical constraints when a square grid system was employed to structure a city. The analysis of existing parametric master plans will also show that data driven planning has not put topography as a significant hierarchical. Through case studies using the developed tool, a clearer understanding of how topography can shape infrastructure can be understood. The analysis of topography is the main driving data iteration point which generates the infrastructure, grid, and division systems.
keywords Master Plan; Parametricism; Urban Design; GIS Data; Topography Optimisation; FLUX
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2017_072
id sigradi2017_072
authors Amaral de Andrade, Bruno; Camila Marques Zyngier, Camila Marques Zyngier, Ana Clara Mourão Moura
year 2017
title Roteiro Metodológico para Gamificação do Geodesign Aplicado ao Planejamento Urbano: Por uma Experiência Lúdica no Projeto de Futuros Alternativos para a Cidade com Crianças [Methodological Guide for the Gamification of Geodesign Applied to Urban Planning: For a Ludic Experience on the Project of Alternative Futures for the City with Children]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.491-495
summary This article aims to present a Methodological Guide to add gamification elements to the Geodesign framework when planning the future of the city, using Geogames such Minecraft, with the participation of children in Tirol, in Brazil. The problematic tackled is related to the challenges that participants of a Geodesign workshop face when co-designing projects as alternative futures for the territory, such as losing engagement and involvement. To support the participants overcome these challenges we incorporate playfulness into the some of the Geodesign workshop phases enhancing geovisualization, collaboration and cognition.
keywords Geodesign; Geogames; Geovisualization; Participatory Planning; Chindren’s Design.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_82
id acadia17_82
authors Andreani, Stefano; Sayegh, Allen
year 2017
title Augmented Urban Experiences: Technologically Enhanced Design Research Methods for Revealing Hidden Qualities of the Built Environment
doi https://doi.org/10.52842/conf.acadia.2017.082
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 82-91
summary The built environment is a complex juxtaposition of static matter and dynamic flows, tangible objects and human experiences, physical realities and digital spaces. This paper offers an alternative understanding of those dichotomies by applying experimental design research strategies that combine objective quantification and subjective perception of urban contexts. The assumption is that layers of measurable datasets can be afforded with personal feedback to reveal "hidden" characteristics of cities. Drawing on studies from data and cognitive sciences, the proposed method allows us to analyze, quantify and visualize the individual experience of the built environment in relation to different urban qualities. By operating in between the scientific domain and the design realm, four design research experiments are presented. Leveraging augmenting and sensing technologies, these studies investigate: (1) urban attractors and user attention, employing eye-tracking technologies during walking; (2) urban proxemics and sensory experience, applying proximity sensors and EEG scanners in varying contexts; (3) urban mood and spatial perception, using mobile applications to merge tangible qualities and subjective feelings; and (4) urban vibe and paced dynamics, combining vibration sensing and observational data for studying city beats. This work demonstrates that, by adopting a multisensory and multidisciplinary approach, it is possible to gain a more human-centered, and perhaps novel understanding of the built environment. A lexicon of experimented urban situations may become a reference for studying different typologies of environments from the user experience, and provide a framework to support creative intuition for the development of more engaging, pleasant, and responsive spaces and places.
keywords design methods; information processing; art and technology; hybrid practices
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_288125 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002