CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id acadia17_382
id acadia17_382
authors Melenbrink, Nathan; Kassabian, Paul; Menges, Achim; Werfel, Justin
year 2017
title Towards Force-aware Robot Collectives for On-site Construction
doi https://doi.org/10.52842/conf.acadia.2017.382
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 382- 391
summary Due to the irregular and variable environments in which most construction projects take place, the topic of on-site automation has previously been largely neglected in favor of off-site prefabrication. While prefabrication has certain obvious economic and schedule benefits, a number of potential applications would benefit from a fully autonomous robotic construction system capable of building without human supervision or intervention; for example, building in remote environments, or building structures whose form changes over time. Previous work using a swarm approach to robotic assembly generally neglected to consider forces acting on the structure, which is necessary to guarantee against failure during construction. In this paper we report on key findings for how distributed climbing robots can use local force measurements to assess aspects of global structural state. We then chart out a broader trajectory for the affordances of distributed on-site construction in the built environment and position our contributions within this research agenda. The principles explored in simulation are demonstrated in hardware, including solutions for force-sensing as well as a climbing robot.
keywords material and construction; physics; construction/robotics; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2017_124
id ecaade2017_124
authors Pantazis, Evangelos and Gerber, David
year 2017
title Emergent order through swarm fluctuations - A framework for exploring self-organizing structures using swarm robotics
doi https://doi.org/10.52842/conf.ecaade.2017.1.075
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 75-84
summary In modern architecture, construction processes are based on top down planning, yet in nature but also in vernacular architecture, the shape of shelters/nests is the result of evolutionary material processes which takes place without any global coordination or plan. This work presents a framework for exploring how self-organizing structures can be achieved in a bottom up fashion by implementing a swarm of simple robots(bristle bots). The robots are used as a hardware platform and operate in a modular 2D arena filled with differently shaped passive building blocks. The robots push around blocks and their behaviour can be programmed mechanically by changing the geometry of their body. Through physical experimentation and video analysis the relationships between the properties of the emergent patterns (size, temporal stability) and the geometry of the robot/parts are studied. This work couples a set of agent based design tools with a robust robotic system and a set of analysis tools for generating and actualising emergent 2D structures.
keywords Multi Agent Systems; Generative Design; Swarm Robotics; Self-organizing patterns
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia17_138
id acadia17_138
authors Berry, Jaclyn; Park, Kat
year 2017
title A Passive System for Quantifying Indoor Space Utilization
doi https://doi.org/10.52842/conf.acadia.2017.138
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 138-145
summary This paper presents the development of a prototype for a new sensing device for anonymously evaluating space utilization, which includes usage factors such as occupancy levels, congregation and circulation patterns. This work builds on existing methods and technology for measuring building performance, human comfort and occupant experience in post-occupancy evaluations as well as pre-design strategic planning. The ability to collect data related to utilization and occupant experience has increased significantly due to the greater accessibility of sensor systems in recent years. As a result, designers are exploring new methods to empirically verify spatial properties that have traditionally been considered more qualitative in nature. With this premise, this study challenges current strategies that rely heavily on manual data collection and survey reports. The proposed sensing device is designed to supplement the traditional manual method with a new layer of automated, unbiased data that is capable of capturing environmental and social qualities of a given space. In a controlled experiment, the authors found that the data collected from the sensing device can be extrapolated to show how layout, spatial interventions or other design factors affect circulation, congregation, productivity, and occupancy in an office setting. In the future, this sensing device could provide designers with real-time feedback about how their designs influence occupants’ experiences, and thus allow the designers to base what are currently intuition-based decisions on reliable data and evidence.
keywords design methods; information processing; smart buildings; IoT
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia17_284
id acadia17_284
authors Hu, Zhengrong; Park, Ju Hong
year 2017
title HalO [Indoor Positioning Mobile Platform]: A Data-Driven, Indoor-Positioning System With Bluetooth Low Energy Technology To Datafy Indoor Circulation And Classify Social Gathering Patterns For Assisting Post Occupancy Evaluation
doi https://doi.org/10.52842/conf.acadia.2017.284
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 284-291
summary Post-Occupancy Evaluation (POE) as an integrated field between architecture and sociology has created practical guidelines for evaluating indoor human behavior within a built environment. This research builds on recent attempts to integrate datafication and machine learning into POE practices that may one day assist Building Information Modeling (BIM) and multi-agent modeling. This research is based on two premises: 1) that the proliferation of Bluetooth Low Energy (BLE) technology allows us to collect a building user’s data cost-effectively and 2) that the growing application of machine learning algorithms allows us to process, analyze and synthesize data efficiently. This study illustrates that the mobile platform HalO can serve as a generic tool for datafication and automation of data analysis of the movement of a building user. In this research, the iOS mobile application HalO, combined with BLE beacons enable building providers (architects, developers, engineers and facility managers etc.) to collect the user’s indoor location data. Triangulation was used to pinpoint the user’s indoor positions, and k-means clustering was applied to classify users into different gathering groups. Through four research procedures—Design Intention Analysis, Data Collection, Data Storage and Data Analysis—the visualized and classified data helps building providers to better evaluate building performance, optimize building operations and improve the accuracy of simulations.
keywords design methods; information processing; data mining; IoT; AI; machine learning
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2017_113
id caadria2017_113
authors Huang, Weixin, Lin, Yuming and Wu, Mingbo
year 2017
title Spatial-Temporal Behavior Analysis Using Big Data Acquired by Wi-Fi Indoor Positioning System
doi https://doi.org/10.52842/conf.caadria.2017.745
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 745-754
summary Understanding of people's spatial behavior is fundamental to architectural and urban design. However, traditional investigation methods applied in environmental behavior studies is highly limited regarding the amount of samples and regions it covers, which is not sufficient for the exploration of complex dynamic human behaviors and social activities in architectural space. Only recently the developments in indoor positioning system (IPS) and big data analysis technique have made it possible to conduct a full-time, full-coverage study on human environmental behavior. Among the variety IPS systems, the Wi-Fi IPS system is increasingly widely used because it is easy to be applied with acceptable cost. In this paper, we analyzed a 60-days anonymized data set, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. The analysis revealed interesting patterns on people's behavior besides temporal spatial distribution, ranging from the cyclical fluctuation in human flow to behavioral patterns of sub-regions, some of which are not easy to be identified and interpreted by the traditional field observation. Through this case study, behavioral data from IPS system has exhibited great potential in bringing about profound changes in the study of environmental behavior.
keywords environmental behavior study; Wi-Fi; indoor positioning system; big data; spatial temporal behavior; ski resort
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2017_163
id caadria2017_163
authors Kalantari, Saleh and Saleh Tabari, Mohammad Hassan
year 2017
title GrowMorph: Bacteria Growth Algorithm and Design
doi https://doi.org/10.52842/conf.caadria.2017.479
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 479-487
summary GrowMorph is an ongoing research project that addresses the logic of bacterial cellular growth and its potential uses in architecture and design. While natural forms have always been an inspiration for human creativity, contemporary technology and scientific knowledge can allow us to advance the principle of biomimesis in striking new directions. By examining various patterns of bacterial growth, including their parametric logic, their use of responsive membranes and scaffolding structures, and their environmental fitness, this research creates new algorithmic design and construction models that can be applied through digital fabrication. Based on data from confocal microscopy, simulations were created using programming language Processing to model the environmental responses and morphology of the bacteria's growth. To demonstrate the utility of the results, the simulations created in this research were used to design an organically shaped pavilion and to suggest a new digital knitting process for material construction. The results from the study can inspire designers to make use of bacterial growth logic in their work, and provide them with practical tools for this purpose. Potential applications include novel designs for responsive surfaces, new fabrication processes, and unique spatial structures in future architectural work.
keywords Synthetic Biology; Architecture; Bio-fabrication; Bio-constructs; Design Computation
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2017_085
id ecaade2017_085
authors Agustí-Juan, Isolda, Hollberg, Alexander and Habert, Guillaume
year 2017
title Integration of environmental criteria in early stages of digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2017.2.185
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 185-192
summary The construction sector is responsible for a big share of the global energy, resource demand and greenhouse gas emissions. As such, buildings and their designers are key players for carbon mitigation actions. Current research in digital fabrication is beginning to reveal its potential to improve the sustainability of the construction sector. To evaluate the environmental performance of buildings, life cycle assessment (LCA) is commonly employed. Recent research developments have successfully linked LCA to CAD and BIM tools for a faster evaluation of environmental impacts. However, these are only partially applicable to digital fabrication, because of differences in the design process. In contrast to conventional construction, in digital fabrication the geometry is the consequence of the definition of functional, structural and fabrication parameters during design. Therefore, this paper presents an LCA-based method for design-integrated environmental assessment of digitally fabricated building elements. The method is divided into four levels of detail following the degree of available information during the design process. Finally, the method is applied to the case study "Mesh Mould", a digitally fabricated complex concrete wall that does not require any formwork. The results prove the applicability of the method and highlight the environmental benefits digital fabrication can provide.
keywords Digital fabrication; Parametric LCA; Early design; Sustainability
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2017_061
id ecaade2017_061
authors Castellari, Dario and Erioli, Alessio
year 2017
title Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics
doi https://doi.org/10.52842/conf.ecaade.2017.1.661
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 661-670
summary Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.
keywords tectonics; combinatorics; unit-based system; branching network
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_290
id ecaade2017_290
authors Di Giuda, Giuseppe Martino, Villa, Valentina, Ciribini, Angelo Luigi Camillo and Tagliabue, Lavinia Chiara
year 2017
title Theory of Games and Contracts to define the Client role in Building Information Modeling
doi https://doi.org/10.52842/conf.ecaade.2017.1.161
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 161-168
summary This research focus on the application of Theory of Games and asymmetry information to the AEC sector underling the impact of these theories to the supply chain and in particular on the evolution of the client role in a Building Information Modeling process. The mentioned theories used to be applied to macroeconomic fields, but allowed the researchers to understand the evolution of the sector and the internal behavior of the team. This analysis of team behaviors permits to grasp how the contractual frame could hold up the natural trend of the market to collaborate, which leads the sector to improve itself. The Theory of Games could be adopted as a hermeneutic tool for understanding actions and agreements to which the various parties achieve. The research provided a global analysis on the evolution of the client role in a cyclical process. Further development of the research will be the application of the theory to a real case study to catch the real team behavior in a collaborative environment.
keywords Building Information Modeling; game theory; contracts theory; hermeneutical approach
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_601
id cf2017_601
authors Gerber, David Jason; Pantazis, Evangelos; Wang, Alan
year 2017
title Interactive Design of Shell Structures Using Multi Agent Systems: Design Exploration of Reciprocal Frames Based on Environmental and Structural Performance
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 601-616.
summary This paper presents a continuation of research on the prototyping of multi-agent systems for architectural design with a focus on generative design as a means to improve design exploration in the context of multiple objectives and complexity. The interactive design framework focuses on coupling force, environmental constraints and fabrication parameters as design drivers for the form finding of shell structures. The objective of the research is to enable designers to intuitively generate free form shells structures that are conditioned by multiple objectives for architectural exploration in early stages of design. The generated geometries are explored through reciprocal frames, and are evaluated in an automated fashion both on local and global levels in terms of their structural and environmental performance and constructability. The analytical results along with fabrication constraints are fed back into the generative design process in order to more rapidly and expansively design explore across complexly coupled objectives. The paper describes the framework and presents the application of this methodology for the design of fabrication aware shell structures in which environmental and structural trade offs drive the final set of design options.
keywords Generative Design, Parametric Design, Multi-Agent Systems, Digital Fabrication, Form Finding, Reciprocal Frames
series CAAD Futures
email
last changed 2017/12/01 14:38

_id sigradi2017_007
id sigradi2017_007
authors Gronda, Ma. Luciana; Mauro Chiarella
year 2017
title Materialidad Digital. Análisis de estrategias de Arquitectura Orientada al Desempeño transferibles al Diseño Resiliente [Digital Materiality. Analysis of Performance-Oriented Architecture strategies transferable to Resilient Design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.51-59
summary The general objective of the research is to contribute to the critical conceptualization of experimental architectural practices in the context of the production suggested by Digital Materiality from a global perspective. Performance Oriented Architecture is the capacity that material systems have for Active, Responsive or Living Performance. These three lines of action, analyzed with antecedents, suggest efficient forms of symbiosis with the environment, starting from the application of Biomimetic research methodologies. Strategic possibilities for implementation are identified where technology, interdisciplinary and with creativity, offers access to Resilient Design solutions to adapt to the consequences of a design subordinated to the needs of industrialization.
keywords Digital Materiality; Performance; Biomimetic Research; Resilient Design.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia17_582
id acadia17_582
authors Staback, Danniely; Nguy?n, M?Dung; Addison, James; Angles, Zachary; Karsan, Zain; Tibbits, Skylar
year 2017
title Aerial Pop-Up Structures
doi https://doi.org/10.52842/conf.acadia.2017.582
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 582- 589
summary Research into self-assembly systems has been growing in recent years, focusing on the design and engineering of materials to react to environmental factors, which trigger a chain of reactions promoting the components to build themselves. This paper attempts to expand this field with the design and testing of a full-scale structure that could be dropped high above the ground, self-assemble in the air in a matter of seconds, and form an inhabitable space on the ground. This system uses spline-based fiberglass rods, folded in specific configurations and connected with parachute surfaces as the main material system, enabling the global aerial performance. A series of drop tests were conducted from a 100? crane to investigate the unfolding sequence, the release mechanisms, and the parachute configurations, leading to its successful aerial assembly.
keywords paper material and construction; physics; smart materials; smart assembly; construction; form finding
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id caadria2017_047
id caadria2017_047
authors Wang, Sining and Crolla, Kristof
year 2017
title Regional Barriers - A Study on the Applicability of SHoP's Project Delivery Strategies to China's Architectural Environment
doi https://doi.org/10.52842/conf.caadria.2017.199
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 199-208
summary This paper discusses New York based architecture practice - SHoP's project delivery strategies, to demonstrate an avant-garde methodology in pursuing architect-led project environments where optimised outcomes are achieved with digital workflows. The paper elaborates on how today's Chinese architecture adopts global digital trends while certain barriers are impeding development of computationally integrated project delivery modes. Thirdly, the paper indicates the emergence of a new generation of digital architects in China, showcasing their practices to argue for the regional applicability of SHoP's working mode. The paper concludes by summarising the disadvantages of the current Chinese architectural system, advocating the necessity of a systematic digitalisation, and discussing the Western potential in China's modernising architecture.
keywords Chinese architecture; project delivery; digital paradigm; SHoP; digital workflow
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2017_136
id caadria2017_136
authors Zhang, Cheng and Ong, Lijing
year 2017
title Optimization of Window-Wall-Ratio using BIM-based Energy Simulation
doi https://doi.org/10.52842/conf.caadria.2017.397
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 397-405
summary In this research, sensitivity analysis is applied to investigate the impact from U-values of walls, U-value of windows, and the window-to-wall ratio. The purpose is to find the co-relationship between those parameters with the building energy performance, including embedded energy in materials and operational energy during the lifecycle. Building Information Modeling (BIM) is used as a platform to obtain the material quantities and carry on energy simulation. A case study is applied for a manufactory plant in Suzhou, China. By applying both local sensitivity analysis and global sensitivity analysis, it is found that thermal properties of walls have insignificant impact on Operational Energy to Embodied Energy (OE-EE) relationship of Window-Wall-Ratio (WWR) whereas changing thermal properties of windows affects the OE-EE relationship behaviour of WWR. Lowering U-value of windows brings positive impact to the OE-EE relationship of WWR, and vice versa. Therefore, suggestions are made as reducing/increasing U-value of windows while increasing/decreasing the WWR of building.
keywords Building Informaion Modeling; Window-Wall-Ratio; energy simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2017_249
id cf2017_249
authors Agirbas, Asli
year 2017
title Teaching Design by Coding in Architecture Undergraduate Education: A Case Study with Islamic Patterns
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 249-258.
summary Computer-aided design has found its role in the undergraduate education of architects, and presently design by coding is also gradually finding further prominence in accord with the increasing demand by students who wish to learn more about this topic. This subject is included in an integrated manner in some studio courses on architecture design in some schools, or it is taught separately in elsewhere. In terms of the separate course on coding, the principal difficulty is that actual applications of the method can rarely be included due to time limitations and the fact that it is conducted separately from the studio course on architecture. However, within the framework of the architectural education, in order to learn about the coding it is necessary to consider it along with the design process, and this versatile thinking can only be achieved by the application of the design. In this study, an elective undergraduate course is considered in the context of design and to yield a versatile thinking strategy while learning the language of visual programming. The course progressed under the theoretical framework of shape grammar from the design stage through to the digital fabrication process, and the experimental studies were carried out on the selected topic of Islamic pattern. A method was proposed to improve the productivity of such courses, and an evaluation of the results is presented.
keywords Islamic Patterns, Shape Grammars, Architectural Education, Parametric Design, CAAD.
series CAAD Futures
email
last changed 2017/12/01 14:38

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_582828 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002