CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 577

_id ecaade2017_061
id ecaade2017_061
authors Castellari, Dario and Erioli, Alessio
year 2017
title Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics
doi https://doi.org/10.52842/conf.ecaade.2017.1.661
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 661-670
summary Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.
keywords tectonics; combinatorics; unit-based system; branching network
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_163
id caadria2017_163
authors Kalantari, Saleh and Saleh Tabari, Mohammad Hassan
year 2017
title GrowMorph: Bacteria Growth Algorithm and Design
doi https://doi.org/10.52842/conf.caadria.2017.479
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 479-487
summary GrowMorph is an ongoing research project that addresses the logic of bacterial cellular growth and its potential uses in architecture and design. While natural forms have always been an inspiration for human creativity, contemporary technology and scientific knowledge can allow us to advance the principle of biomimesis in striking new directions. By examining various patterns of bacterial growth, including their parametric logic, their use of responsive membranes and scaffolding structures, and their environmental fitness, this research creates new algorithmic design and construction models that can be applied through digital fabrication. Based on data from confocal microscopy, simulations were created using programming language Processing to model the environmental responses and morphology of the bacteria's growth. To demonstrate the utility of the results, the simulations created in this research were used to design an organically shaped pavilion and to suggest a new digital knitting process for material construction. The results from the study can inspire designers to make use of bacterial growth logic in their work, and provide them with practical tools for this purpose. Potential applications include novel designs for responsive surfaces, new fabrication processes, and unique spatial structures in future architectural work.
keywords Synthetic Biology; Architecture; Bio-fabrication; Bio-constructs; Design Computation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2017_277
id ecaade2017_277
authors Borhani, Alireza and Kalantar, Negar
year 2017
title APART but TOGETHER - The Interplay of Geometric Relationships in Aggregated Interlocking Systems
doi https://doi.org/10.52842/conf.ecaade.2017.1.639
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 639-648
summary In this research, the authors discuss multiple design process criteria, fabrication methods, and assembly workflows for covering spaces using discrete pieces of material shorter than the space's span, otherwise known as topologically interlocking structures. To expand this line of research, the study challenges the interplay of geometric relationships in the assembly of unreinforced and mortar-less structures that work purely under compressive forces. This work opens with a review of studies concerning topological interlocking, a unique type of material and structural system. Then, through a description of two design projects - an interlocking footbridge and a vaulted structure - the authors demonstrate how they encouraged students to engage in a systematic exploration of the generative relationships among surface geometry, the configuration and formal variations of its subdividing cells, and the stability of the final interlocking assembly. In this fashion, the authors argue that there is hope for carrying the design criteria of topological interlocking systems into the production of precast concrete structures.
keywords Topological Interlocking Assembly, Digital Stereotomy, Compression-Only Vaulted Structures, Surface Tessellation, Digital Materiality.
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_324
id acadia17_324
authors Kilian, Axel; Sabourin, François
year 2017
title Embodied Computation – An Actuated Active Bending Tower: Using Simulation-Model-Free Sensor Guided Search To Reach Posture Goals
doi https://doi.org/10.52842/conf.acadia.2017.324
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 324- 329
summary The concept of Embodied Computation is to leverage the combination of abstract computational and material artifact as a method for exploration in the design process. A common approach for the integration of the two realms is to use computational simulation based on the geometric form of the artifact for the prediction of material behavior. This leads to the integration of a geometric model abstraction of the physical artifact into the control software of the actuated device and can produce deviations between the state of the physical construct and the computational state. Here an alternative approach of a soft, actuated, active bending structure is explored. Six fluidic actuators are combined with a six degree of freedom (DOF) sensor for posture feedback. Instead of relying on simulated kinematics to reach a particular posture, the sensor-enabled posture feedback guides a simplex search algorithm to find combinations of pressures in the six actuators that minimize the combined tilting angles for the goal of a level tower top. Rather than simulating the structure computationally, the model is shifted to one of feedback and control, and the structure operates as a physical equation solver returning an x-y-z tilting angle for every set of actuation pressures. Therefore the computational model of the search process is independent of the physical configuration of the structure itself and robust to changes in the environment or the structure itself. This has the future potential for more robust control of non-determined structures and constructs with heterogeneous DOF common in architecture where modeling behavior is difficult.
keywords material and construction; smart buildings
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_056
id ecaade2017_056
authors Kontovourkis, Odysseas
year 2017
title Multi-objective design optimization and robotic fabrication towards sustainable construction - The example of a timber structure in actual scale
doi https://doi.org/10.52842/conf.ecaade.2017.1.337
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 337-346
summary This paper attempts to reconsider the role of advanced tools and their effective implementation in the field of Architecture, Engineering and Construction (AEC) through the concept of sustainable construction. In parallel, the paper aims to discuss and find common ground for communication between industrial and experimental processes guided by sustainable criteria, an area of investigation that is currently in the forefront of the research work conducted in our robotic construction laboratory. Within this frame, an ongoing work into the design, analysis and automated construction of a timber structure in actual scale is exemplified and used as a pilot study for further discussion. Specifically, the structure consists of superimposed layers of timber elements that are robotically cut and assembled together, formulating the overall structural system. In order to achieve a robust, reliable and economically feasible solution and to control the automated construction process, a multi-objective design optimization process using evolutionary principles is applied. Our purpose is to investigate possibilities for sustainable construction considering minimization of cost and material waste, and in parallel, discussing issues related to the environmental impact and the feasibility of solutions to be realized in actual scale.
keywords Multi-objective optimization; robotic fabrication; cost and material waste minimization; sustainable construction; timber structure
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2017_039
id ecaade2017_039
authors Weissenböck, Renate
year 2017
title ROBOTRACK - Linking manual and robotic design processes by motion-tracking
doi https://doi.org/10.52842/conf.ecaade.2017.1.651
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 651-660
summary This study investigates design opportunities fostered by fabrication processes, ex-ploring manual and robotic forming. It links handcraft and digital fabrication techniques by implementing a motion capture system. It suggests physical prototyping as a novel form of design research, operating in the dynamic field between human capabilities, machine skills, and material behavior. This paper presents a series of experimental case studies created in a seminar taught by the author at Graz University of Technology. In this course, students con-duct tactile experiments, forming panels by hand and by robot, guided by the material behav-ior and reaction. Thereby, they explore the creation of architectural form in a dynamic inter-play between human, machine and material. Movement and speed of hand forming proce-dures are recorded into digital data, and then converted into machine code, driving a 6-axis industrial robotic arm. By using the same set-up for manual and robotic forming, both pro-cesses are relatable.
keywords design by making; digital fabrication; robotic fabrication; thermoforming; material behavior; motion tracking; craft; design education; design research; intuition; human machine interaction
series eCAADe
type normal paper
email
last changed 2022/06/07 07:58

_id cf2017_567
id cf2017_567
authors Kim, Ikhwan; Lee, Injung; Lee, Ji-Hyun
year 2017
title The Expansion of Virtual Landscape in Digital Games: Classification of Virtual Landscapes Through Five principles
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 567-584.
summary This research established classification system which contains five principles and variables to classify the types of the virtual landscape in digital games. The principles of the classification are Story, Space Shape, Space and Action Dimension, User Complexity and Interaction Level. With this classification system, our research group found the most representative types of virtual landscape in the digital game market through 1996 to 2016. Although mathematically there can be 288 types of virtual landscape, only 68 types have been used in the game market in recent twenty years. Among the 68 types, we defined 3 types of virtual landscape as the most representative types based on the growth curve and a number of cases. Those three representative types of virtual landscapes are Generating / Face / 3D-3D / Single / Partial, Providing / Chain / 3D-3D / Single / Partial and Providing / Linear / 2D-2D / Single / Partial. With the result, the researchers will be able to establish the virtual landscape design framework for the future research.
keywords Digital Game, Virtual Landscape, Game Design, Game Classification
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2020_184
id ecaade2020_184
authors Kycia, Agata and Guiducci, Lorenzo
year 2020
title Self-shaping Textiles - A material platform for digitally designed, material-informed surface elements
doi https://doi.org/10.52842/conf.ecaade.2020.2.021
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 21-30
summary Despite the cutting edge developments in science and technology, architecture to a large extent still tends to favor form over matter by forcing materials into predefined, often superficial geometries, with functional aspects relegated to materials or energy demanding mechanized systems. Biomaterials research has instead shown a variety of physical architectures in which form and matter are intimately related (Fratzl, Weinkamer, 2007). We take inspiration from the morphogenetic processes taking place in plants' leaves (Sharon et al., 2007), where intricate three-dimensional surfaces originate from in-plane growth distributions, and propose the use of 3D printing on pre-stretched textiles (Tibbits, 2017) as an alternative, material-based, form-finding technique. We 3D print open fiber bundles, analyze the resulting wrinkling phenomenon and use it as a design strategy for creating three-dimensional textile surfaces. As additive manufacturing becomes more and more affordable, materials more intelligent and robust, the proposed form-finding technique has a lot of potential for designing efficient textile structures with optimized structural performance and minimal usage of material.
keywords self-shaping textiles; material form-finding; wrinkling; surface instabilities; bio-inspired design; leaf morphogenesis
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_138
id ecaade2017_138
authors Nerla, Maria Giuditta, Erioli, Alessio and Garai, Massimo
year 2017
title Modulated corrugations by differential growth - Integrated FRP tectonics towards a new approach to sustainability, fusing architectural and energy design for a new students’ space
doi https://doi.org/10.52842/conf.ecaade.2017.2.593
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 593-602
summary This Master Thesis research investigates the concept of 'integrated tectonics' as a new way of thinking sustainability in architecture, intended as an ecology of different, integrated factors which take part in a seamless design-to-fabrication process. In particular, this new paradigm is applied to the design of a pavilion made of a fiber-reinforced (FRP) sandwich shell integrating multiple systems and performances. A differential growth algorithm mimicking cellular tissue development modulates performance across the surface through ornamental features in the form of corrugated patterns. Iterative feedback simulations allow the exploration of the mutual relations connecting morphogenesis and performance distribution patterns at the architectural scale. Problems connected to simulation inaccuracies and difficult software integration are discussed. A 1:2 scale prototype of a shell portion was fabricated to test material properties and production feasibility.
keywords Fiber-reinforced polymers (FRP); integrated tectonics; differential growth; composite materials; ecology; sustainability
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_457
id cf2017_457
authors Erdine, Elif; Kallegias, Alexandros; Lara Moreira, Angel Fernando; Devadass, Pradeep; Sungur, Alican
year 2017
title Robot-Aided Fabrication of Interwoven Reinforced Concrete Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 457.
summary This paper focuses on the realization of three-dimensionally interwoven concrete structures and their design process. The output is part of an ongoing research in developing an innovative strategy for the use of robotics in construction. The robotic fabrication techniques described in this paper are coupled with the computational methods dealing with geometry rationalization and material constraints among others. By revisiting the traditional bar bending techniques, this research aims to develop a novel approach by the reduction of mechanical parts for retaining control over the desired geometrical output. This is achieved by devising a robotic tool-path, developed in KUKA|prc with Python scripting, where fundamental material properties, including tolerances and spring-back values, are integrated in the bending motion methods via a series of mathematical calculations in accord with physical tests. This research serves to demonstrate that robotic integration while efficient in manufacturing it also retains valid alignment with the architectural design sensibility.
keywords Robotic fabrication, Robotic bar bending, Concrete composite, Geometry optimization, Polypropylene formwork
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac201715404
id ijac201715404
authors Miranda, Pablo
year 2017
title Computer utterances: Sequence and event in digital architecture
source International Journal of Architectural Computing vol. 15 - no. 4, 268-284
summary Barely a month before the end of World War II, a technical report begun circulating among allied scientists: the ‘First Draft of a Report on the EDVAC’, attributed to John von Neumann, described for the first time the design and implementation of the earliest stored-program computer. The ‘First Draft’ became the template followed by subsequent British and American computers, establishing the standard characteristics of most computing machines to date. This article looks at how the material and design choices described in this report influenced architecture, as it set up the technological matrix onto which a discipline relying on a tradition of drawn geometry would be eventually completely remediated. It consists of two parts: first, a theoretical section, analysing the repercussions for architecture of the type of computer laid out in the ‘First Draft’. Second, a description of a design experiment, a sort of information furniture, that tests and exemplifies some of the observations from the first section. This experiment examines the possibilities of an architecture that, moving beyond geometric representations, uses instead the programming of events as its rationale. The structure of this article reflects a methodology in which theoretical formulation and design experiments proceed in parallel. The theoretical investigation proposes concepts that can be tested and refined through design and conversely design work determines and encourages technical, critical and historical research. This relation is dialogical: theoretical investigation is not simply a rationalisation and explanation of earlier design work; inversely, the role of design is not just to illustrate previously formulated concepts. Both design and theorisation are interdependent but autonomous in their parallel development.
keywords Stored-program, Turing machine, Electronic Discrete Variable Automatic Computer, inscription/incorporation, geometry, sequence, event, information furniture, tangible interface, calm technoloy
series journal
email
last changed 2019/08/07 14:03

_id sigradi2020_643
id sigradi2020_643
authors Naylor, John Osmond; Leconte, Nancy; Michel Vendryes, Franck Reginald
year 2020
title Education to practice to ecology: A review and preliminary evaluation of a new architectural design curriculum using computational design tools and bamboo in Haiti
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 643-651
summary There is an absence of lightweight, sustainable construction materials in contemporary Haitian construction, a fact highlighted in the disproportionate loss of life in the 2010 Port-au-Prince earthquake. Between 2014 and 2017 the authors delivered a series of architectural design workshops in Haiti to raise awareness and develop design skills for bamboo using computational design tools. This paper provides a review of these workshops and a preliminary evaluation from surveys conducted with the course participants. Results showed architectural education had changed perceptions of bamboo and showed potential positive ecological impact due to subsequent reforestation activities instigated by participants. Weaknesses were in the lack of subsequent use of parametric modelling software. Bamboo material knowledge and a new architectural design methodology have been most relevant to their professional or academic work.
keywords Haiti, Full-culm bamboo, Architectural education, Sustainable development, Parametric design
series SIGraDi
email
last changed 2021/07/16 11:52

_id caadria2017_080
id caadria2017_080
authors Suzuki, Seiichi and Knippers, Jan
year 2017
title Topology-driven Form-finding - Implementation of an Evolving Network Model for Extending Design Spaces in Dynamic Relaxation
doi https://doi.org/10.52842/conf.caadria.2017.489
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 489-498
summary This paper introduces a novel computational design methodology called topology-driven for the numerical form-finding of discrete networks and presents the essential building block for storing and processing information. Numerical form-finding focuses on computing the optimum geometric configuration of lightweight structures in which shape is the result of reciprocal dependencies between forces, material behaviors and structural performances. Among the design community, Dynamic Relaxation (DR) has gained in popularity given its capacity to support more flexible and interactive design spaces in form-finding. However, common implementations of networks models only focus on the interactive exploration of material and geometrical properties without further specification for topological dynamization. For facing this problematic, we propose an object-oriented approach to attach specific functionalities to particular pieces of data within the numerical schema. Here, we describe the implementation of a rule-based system for managing objects´ interactions in order to continuously track topological and geometrical changes. Based on this concept, larger design spaces can be developed for the interactive exploration of structural shapes.
keywords Topology-driven; Form-Finding; Dynamic Relaxation; Object Structures; Design Spaces
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_154
id acadia17_154
authors Brown, Nathan; Mueller, Caitlin
year 2017
title Designing With Data: Moving Beyond The Design Space Catalog
doi https://doi.org/10.52842/conf.acadia.2017.154
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 154-163
summary Design space catalogs, which present a collection of different options for selection by human designers, have become commonplace in architecture. Increasingly, these catalogs are rapidly generated using parametric models and informed by simulations that describe energy usage, structural efficiency, daylight availability, views, acoustic properties, and other aspects of building performance. However, by conceiving of computational methods as a means for fostering interactive, collaborative, guided, expert-dependent design processes, many opportunities remain to improve upon the originally static archetype of the design space catalog. This paper presents developments in the areas of interaction, automation, simplification, and visualization that seek to improve on the current catalog model while also describing a vision for effective computer-aided, performance-based design processes in the future.
keywords design methods; information processing; simulation & optimization; data visualization
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_257
id ecaade2017_257
authors Marcos, Carlos L., Capone, Mara and Lanzara, Emanuela
year 2017
title Digitally Conscious Design - From the Ideation of a Lamp to its Fabrication as a Case Study
doi https://doi.org/10.52842/conf.ecaade.2017.2.219
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 219-228
summary This research tries to reflect on the idea of digitally conscious design, from the inception to the manufacturing process of a prototype. A theoretical reflection on the topic is followed by the discussion about the results at two different universities (Alicante and Naples) where students have been proposed a similar assignment: a digitally conscious design of a lamp. In Alicante, the methodological approach was guided by the relation of the ideation process and the use of specific digital fabrication strategies; students were encouraged to develop and rework their designs taking into account the way in which they should be digitally fabricated. In Naples the teaching proposal involved a disciplinary approach; a deep understanding of the digital fabrication processes including the manufacturing limitations of the machinery employed involving a precise geometric control over the design. In both cases, students had to face a real study case of the design and production making use of digital tools. This comprehensive approach implied the consideration of the project as a process making students aware of the difficulties of getting their ideas materialised through digital fabrication and how their designs had to evolve in order to step over the problems encountered in the manufacturing process in different ways.
keywords digital consciousness; digital fabrication; digital ideation; design constraints
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2017_044
id sigradi2017_044
authors Massara Rocha, Bruno; Leonado Valbão Venancio
year 2017
title Impressão 3D e processo de projeto paramétrico aplicado ao design emergencial [3D printing and parametric design process applied to emergency design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.301-306
summary After the biggest environmental disaster in Brazil, the issue of emergency design emerged. The emergency design is guided by effective and agile responses to disasters and develops specific project intelligences which deals with the particularities and complexities of emergency situations. In this paper concepts and experimental solutions of emergency design are investigated using parametric design and 3d printing. The project explored light biomimetic structural frames and surfaces and analyses the potential of biodegradable materials such as cellulose acetate in the production of these components to create spatial architectural solutions.
keywords Emergency Design; Surface Design; Biomimetic; 3D Printing; Parametric Design
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2017_006
id sigradi2017_006
authors Massara Rocha, Bruno; Leonado Valbão Venancio
year 2017
title Impressão 3D e processo de projeto paramétrico aplicado ao design emergencial [3D printing and parametric design process applied to emergency design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.45-50
summary After the biggest environmental disaster in Brazil, the issue of emergency design emerged. The emergency design is guided by effective and agile responses to disasters and develops specific project intelligences which deals with the particularities and complexities of emergency situations. In this paper concepts and experimental solutions of emergency design are investigated using parametric design and 3d printing. The project explored light biomimetic structural frames and surfaces and analyses the potential of biodegradable materials such as cellulose acetate in the production of these components to create spatial architectural solutions.
keywords Emergency Design; Surface Design; Biomimetic; 3D Printing; Parametric Design
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_483860 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002