CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 493

_id caadria2017_056
id caadria2017_056
authors Carreiro, Miguel, Andrade, Marina A. P. and Sales Dias, Miguel
year 2017
title Cognition and Evaluation of Architecture Environments Based on Geometric Contour References and Aesthetic Judgements
doi https://doi.org/10.52842/conf.caadria.2017.581
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 581-590
summary This paper presents the outline and the achieved results of an experimental study developed to understand the differences on how close architecture spaces with distinct geometric characteristics at contour level, including rounded, curvilinear and sharp, rectilinear elements, are perceived and evaluated. In order to do so, eighteen virtual reality architecture spaces were evaluated by thirty-two test-subjects according to like/dislike aesthetic judgments. As expected, the tested subjects showed a higher level of preference for spaces with rounded, curvilinear contour elements. On another way, when the level of space curvature was high, considering the whole space surface and not only the contour of plan transitions, the level of preference decreased significantly. These results support the idea that rounded, curvilinear elements are interpreted as being more pleasant and preferred than sharp, rectilinear ones and create new knowledge on the how the levels of such preference are more accurate for moderate rather than radical curvature rates.
keywords Geometric contour; Architecture space environment; Curve, rounded, angular and rectilinear; aesthetic judgement; experimental study.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
doi https://doi.org/10.52842/conf.caadria.2017.685
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2017_157
id ecaade2017_157
authors Date, Kartikeya, Schaumann, Davide and Kalay, Yehuda E.
year 2017
title A Parametric Approach To Simulating Use-Patterns in Buildings - The Case Of Movement
doi https://doi.org/10.52842/conf.ecaade.2017.2.503
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 503-510
summary We describe one of the three core use-pattern building blocks of a parametric approach to simulating use-patterns in buildings. Use-patterns are modeled as events which use specified descriptions of spaces, actors and activities which constitute them. The simulation system relies on three fundamental patterns of use - move, meet and do. The move pattern is considered in detail in this paper with specific reference to what we term the partial knowledge issue. Modeling decision making about how to move through the space (what path to take) depends on modeling the actor's partial access to knowledge. Visibility is used as an example of partial knowledge. The parametric approach described in the paper enables the clear separation of syntactical and semantic conditions which inform decisions and the coordination of decisions made by agents in a simulation of use-patterns. This approach contributes to extending the analytical capability of Building Information Models from the point of view of evaluating how a proposed building design may be used, given complex, interrelated patterns of use.
keywords Agent-Based Systems, Simulation, Use-Patterns, Design Tools
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_048
id ecaade2017_048
authors Dennemark, Martin, Schneider, Sven, Koenig, Reinhard, Abdulmawla, Abdulmalik and Donath, Dirk
year 2017
title Towards a modular design strategy for urban masterplanning - Experiences from a parametric urban design studio on emerging cities in Ethiopia
doi https://doi.org/10.52842/conf.ecaade.2017.1.485
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-494
summary In emerging countries there is a need for rapid urban planning, since they are confronted by unprecedented wave of urbanization. This need is even bigger since usually there is no adequate number of professional educated urban planners in these countries. Therefore, we investigate in this paper how to develop a set of methods that allow to generate urban fabric semi-automatically. The challenge is to come up with a generative planning model that adapts to multiple boundary conditions.Through a modular design strategy generative methods are applied by students in an urban design studio in order to combine them into more complex planning strategies for small cities in the emerging country of Ethiopia. The modular approach allows to break down planning into sub-issues to better deal with the overarching problem. For testing the implemented generative urban design strategies various cities are generated at different locations in Ethiopia with various topographic situations. Their underlying design strategies and modular approach are discussed in this paper.
keywords Urban Design; Planning Systems; Modules; Teaching; Emerging Country
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2017_533
id cf2017_533
authors El-Zanfaly, Dina; Abdelmohsen, Sherif
year 2017
title Imitation in Action: A Pedagogical Approach for Making Kinetic Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 533-545.
summary One of the problems in teaching students how to design kinetic architecture is the difficulty of helping them grasp concepts like motion, physical computing and fabrication, concepts not generally dealt with in conventional architectural projects. In this paper, we introduce a pedagogical method for better utilizing prototyping and explore the role prototyping plays in learning and conceptualizing design ideas. Our method is based on building the learner’s sensory experience through iteration and focusing on the process as well as the product. Specifically, our research attempts to address the following questions: How can architecture students anticipate and feel motion while they design kinetic prototypes? How do their prototypes enable them to explore design ideas? As a case study, we applied our methodology in an 8-week workshop in a fabrication laboratory in Cairo, Egypt. The workshop was open to young architects and students who had completed at least four semesters of study at the university. We describe the pedagogical approach we developed to build the sensory experience of making motion, and demonstrate the basic setting and stages of the workshop. We show how a cyclical learning process, based on perception and action -- copying and iteration -- contributed to the students’ learning experience and enabled them to create and improvise on their own.
keywords Kinetic Architecture, Digital Fabrication, Sensory Experience, Computational Making, Imitation
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_074
id caadria2017_074
authors Erhan, Halil, Chan, Janelynn, Fung, Gilbert, Shireen, Naghmi and Wang, Ivy
year 2017
title Understanding Cognitive Overload in Generative Design - An Epistemic Action Analysis
doi https://doi.org/10.52842/conf.caadria.2017.127
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 127-136
summary Choice overload is experienced when designers use generative systems to explore a large number of alternatives. In an experiment, we studied the epistemic actions designers perform to reduce their cognitive load caused by possible choice overload during design exploration. The participants were asked to select alternatives among a large set of solutions in a simulated design environment. For data encoding, we adapted an epistemic action analysis method to understand which actions occurs in what phase of design. Most epistemic actions are observed during criteria applying phase. The most frequent actions were 'clustering and grouping' and 'talking and gestures to guide attention'. Ultimately our goal is to answer if a system can alleviate the possible cognitive overload when working with a large number of alternatives, if so how they would look when implemented.
keywords generative design; parametric modeling; cognitive overload; selection; epistemic actions
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2017_142
id ecaade2017_142
authors Gönenç Sorguç, Arzu, Kruºa Yemiºcio?lu, Müge, Özgenel, Ça?lar F?rat, Katipo?lu, Mert Ozan and Rasulzade, Ramin
year 2017
title The Role of VR as a New Game Changer in Computational Design Education
doi https://doi.org/10.52842/conf.ecaade.2017.1.401.2
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 401-408
summary With the rapid advances in technology, virtual reality(VR) re-emerged as an affordable technology providing new potentials for virtual learning environments(VLE). Within the scope of this study, firstly a general perspective on potentials of VR to create an appropriate VLE is put forward regarding the potentials related with learning modalities. Then, VR as a VLE in architectural education is discussed and utilization of VR is revisited considering the fundamentals of education as how to enhance skills regarding creativity, furnish students to adopt future skills and how VR can be used to enhance design understanding as well as space perception and spatial relations. It is deliberated that instead of mirroring the real spaces, allowing students to understand the virtuality with its own constituents will broaden the understanding of space, spatial relations, scale, motion, and time both in physical and virtual. The dichotomy between physical and virtual materiality, the potentials and pitfalls in the process of transformation from real/physical to virtual - virtual to real/physical are discussed in relation with the student projects designed in the scope of Digital Design Studio course in Middle East Technical University. It is also shown that VR stimulates different learning modalities especially kinesthetic modality and helping students to develop creativity and metacognition about space and spatial relations.
keywords computational design education; virtual reality; digital tools; virtual learning environment
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_040
id caadria2017_040
authors Haslop, Blaire, Schnabel, Marc Aurel and Aydin, Serdar
year 2017
title Glitch Space - Experiments on Digital Decay to Remap the Anatomy of Glitch in 3D
doi https://doi.org/10.52842/conf.caadria.2017.591
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 591-600
summary This research informs of a series of experimental design practices for the understanding computational glitches in architecture which appears to be equivalently a 'given' as well as an 'informed'. 'Glitch-space' is introduced to navigate the discussion through a spatial interpretation of digital decay. Currently glitches are only explored as forms of 2D art. We however, look to reconnect the underlying data to its digital architectural spatial form. Our methodology a systematic iterative process of transformational change to explore design emergence on the base of computational glitches. A numerical data driven process is explored using decayed files which are turned into 3D formal expressions. In this context, stereoscopic techniques are experimented, helping understand further how glitch can be performed within a 3D virtual environment. Ultimately we explore digital architectural form existing solely in the digital realm that confidently expresses glitch in both its design process and aesthetic outcome. Thus, our research intends to bring a level of authenticity with the notion of 'glitch-space' by discussing 3D interpretations of glitch in an architectural form.
keywords Digital Decay; Glitch; Digital Design Methods; Glitch-space; Data Interpretation
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2017_092
id sigradi2017_092
authors Larqué, Hugo; Barbara Marin, Juan Camilo Silva
year 2017
title BioRizom. Host Biotransducer based in mycotic rhizome [BioRizom. Host Biotransducer based in mycotic rhizome]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.640-643
summary The growth of urban settlements is a phenomenon on the rise. It is expected that more than 70% of the people will live in urban settlements by 2050. To be able to tackle and embrace this growth, we need alternative tools that help us to face these challenges. On this framework, this proposal aims to raise the paradigm of how the information can be gathered and used to equilibrate urban systems in terms of planning concerning the distribution of resources. To achieve this goal, the exchange of data through an organic system of biochemical interaction network is proposed.
keywords Smart City; Urban planning; Social Development; Bio-sensor; Internet of Things.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_366
id acadia17_366
authors Lin, Yuming; Huang, Weixin
year 2017
title Behavior Analysis and Individual Labeling Using Data from Wi-Fi IPS
doi https://doi.org/10.52842/conf.acadia.2017.366
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 366- 373
summary It is fairly important for architects and urban designers to understand how different people interact with the environment. However, traditional investigation methods for studying environmental behavior are quite limited in their coverage of samples and regions, which are not sufficient to delve into the behavioral differences of people. Only recently, the development of indoor positioning systems (IPS) and data-mining techniques has made it possible to collect full-time, full-coverage data for behavioral difference research and individualized identification. In our research, the Wi-Fi IPS system is chosen among the various IPS systems as the data source due to its extensive applicability and acceptable cost. In this paper, we analyzed a 60-day anonymized dataset from a ski resort, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. Combining this with mobile phone data and questionnaires, we revealed some interesting characteristics of tourists from different origins through spatial-temporal behavioral data, and further conducted individual labeling through supervised learning. Through this case study, temporal-spatial behavioral data from an IPS system exhibited great potential in revealing individual characteristics besides exploring group differences, shedding light on the prospect of architectural space personalization.
keywords design methods; information processing; data mining; big data
series ACADIA
email
last changed 2022/06/07 07:59

_id ecaade2017_305
id ecaade2017_305
authors Luther, Mark B.
year 2017
title The Application of Daylighting Software for Case-study Design in Buildings
doi https://doi.org/10.52842/conf.ecaade.2017.1.629
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 629-638
summary The application of different software, whether simple or complex, can each play a significant role in the design and decision-making on daylighting for a building. This paper, discusses the task to be accomplished, in real case studies, and how various lighting software programs are used to achieve the desired information. The message iterated throughout the paper is one that respects, and even suggests, the use of even the simplest software, that can guide and inform design decisions in daylighting. Daylighting can be complex since the position of the sun varies throughout the day and year as well as do the sky conditions for a particular location. Just because we now have the computing capacity to model every single minute of a day throughout a year, doesn't justify its task. Several projects; an architecture studio, a university office building, a school library and a gymnasium all present different tasks to be achieved. The daylighting problems, the objects and the software application and their outcomes are presented in this paper. Over a decade of projects has led to reflecting upon the importance of computing in daylighting, its staged approach and the result that it can achieve if properly applied.
keywords Daylighting Design; Daylighting Analysis; Radiosity; Ray-tracing
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2017_015
id caadria2017_015
authors Pelosi, Antony
year 2017
title Where am I? - Spatial Cognition Inside Building Information Models
doi https://doi.org/10.52842/conf.caadria.2017.643
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 643-652
summary How do we know what we are looking at while viewing inside Building Information Modelling (BIM) models? Current architectural software typically provides disconnected methods of aiding spatial cognition. There is a strong history of navigation tools developed for controlling our exploration and movement in BIM models, a study by Ruby Darken and John Sibert (1993) found these tools had a strong influence on people's behaviour and understanding of digital space. People perceive and navigate space differently depending on their individual experience with a BIM model, designers and architects build up a detailed cognitive map during the design of a project, while other people have a less detailed comprehension of a project, having only been exposed to select views. This paper will outline key strategies to improve how people comprehend digital space, supporting people in understanding distance and size while inside BIM models. Three design research projects will be presented. The result of the projects define three strategies; Architectural wayshowing, interior-aware transitions, and distance confirmation. Architectural wayshowing needs to be implemented during the design phase, while the remaining two need to be introduced into BIM editing and viewing software.
keywords Whiteout; wayshowing; spatial cognition; navigation; BIM
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia17_482
id acadia17_482
authors Penman, Scott
year 2017
title Toward Computational Play
doi https://doi.org/10.52842/conf.acadia.2017.482
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 482- 491
summary The day is not far off when autonomous, artificially intelligent agents will be employed in creative industries such as architecture and design. Artificial intelligence is rapidly becoming ubiquitous, and it has absorbed many capabilities once thought beyond its reach. As such, it is critical that we reflect on the relationship between AI and design. Design is often tasked with pushing the envelope in the quest for novel meaning and experience. Designers can’t always rely upon existing models to judge their work. Operating like this requires a curious and open mind, a willingness to eschew reward and occasionally break the rules, and a desire to explore for the sake of exploring. These behaviors fly in the face of traditional implementations of computation and raise difficult questions about the autonomy and subjectivity of artificially intelligent machines. This paper proposes computational play as a field of research that covers how and why designers roam as freely as they do, what the creative potential of such exploration might be, and how such techniques might responsibly be implemented in computational machines. The work argues that autotelism, defined as internal motivation, is an essential aspect of play and outlines how it can be incorporated in a computational framework. The work also demonstrates a proof-of-concept in the form of an autonomous drawing machine that is able to plot a drawing, view the drawing, and make decisions based on what it sees, bringing computational vision and computational drawing together into a cyclical process that permits the use of autotelic play behavior.
keywords design methods; information processing; art and technology; computational / artistic cultures
series ACADIA
email
last changed 2022/06/07 08:00

_id ecaade2017_079
id ecaade2017_079
authors Qabshoqa, Mohammad, Kocaturk, Tuba and Kiviniemi, Arto
year 2017
title A value-driven perspective to understand Data-driven futures in Architecture
doi https://doi.org/10.52842/conf.ecaade.2017.2.407
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 407-416
summary This paper reports on an investigation of the potentials of data utilisation in Architecture from a value generation and business creation points of view, based on an ongoing PhD research by the first author. It is of crucial importance to, first, identify what data actually signifies for Architecture, and secondly to explore how the value obtained through data-driven approaches in other industries could potentially be transferred and applied in our professional context. These objectives have been achieved through a qualitative comparative analysis of various cases. Additionally, the paper discusses the multiplicity of factors which contribute to different interpretations and utilisation of data with reference to various value systems embedded into our profession (e.g. design as ideology, design as profession, design as service). A comparative analysis of the existing data utilisation methods in connection with various value systems provide crucial insights in order to answer the following questions: How can data assess values in architectural design/practice? How can data utilisation give way to the emergence of new values for the profession?
keywords Big Data in Architecture; Data-Driven Architecture Design; Data in Architecture Design; Computational Data Design; Digital Value in Architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id cf2017_414
id cf2017_414
authors Shireen, Naghmi; Erhan, Halil; Woodbury, Robert; Wang, Ivy
year 2017
title Making Sense of Design Space: What Designers do with Large Numbers of Alternatives?
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 414.
summary Today’s generative design tools and large screen displays present opportunities for designers to explore large number of design alternatives. Besides numerous studies in design, the act of exploring design space is yet to be integrated in the design of new digital media. To understand how designer’s search patterns will uncover when provided with a gallery of large numbers of design solutions, we conducted a lab experiment with nine designers. Particularly the study explored how designers used spatial structuring of their work environment to make informed design decisions. The results of the study present intuitions for development of next generation front-end gallery interfaces for managing a large set of design variations while enabling simultaneous editing of design parameters.
keywords Parametric design, Alternatives, Design space exploration, New interfaces, New media, Protocol analysis, User study
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_096
id caadria2017_096
authors Wang, Haofeng and Herr, Christiane M.
year 2017
title Measuring the Perceptive Intricacy of the Chinese Scholar Garden
doi https://doi.org/10.52842/conf.caadria.2017.335
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 335-344
summary The carefully orchestrated relationship between view and movement forms a core composition principle of Chinese scholar gardens to create poetic depth. We focus on one characteristic case study to examine the intricate spatial relationships between what is visible and what is accessible from the garden visitor's perspective. We examine the garden layout through a quantitative approach based on Visibility Graph Analysis. We identify a certain congruence between visibility and accessibility patterns, and propose that a network of strategically distributed overview spaces is employed throughout the garden to counterbalance tensions generated from disjunction between visibility and accessibility. The paper offers new insights into how quantifiable aspects of the garden can be used to generate qualitative perceptions of elegant restraint and compositional intricacy.
keywords Chinese scholar garden; Landscape design; VGA analysis; Overview space; Purview interface
series CAADRIA
email
last changed 2022/06/07 07:58

_id cf2017_333
id cf2017_333
authors Çavuso?lu, Ömer Halil; Çagdas, Gülen
year 2017
title Why Do We Need Building Information Modeling (BIM) in Conceptual Design Phase?
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 333.
summary Many researchers point out that, in conceptual design, many significant decisions are taken to directly affect functional qualities, the performance of the building, aesthetics, and the relationship of the building with the natural environment and climate, even if there is no certain and valid information to create and obtain satisfactory design solution. The focus of the study is to observe and explore how BIM can be used in conceptual design phase and also to investigate how and how effectively BIM can help architects during the process. To develop an understanding to these aims, a case study implementation within sketching and BIM environments which consists of three stages was carried out in an educational setting by three participants who are undergraduate degree students of Faculty of Architecture. Qualitative research methods were used as research methodology and the findings of the implementation were discussed with prominent related literature in the same context.
keywords BIM, Building Information Modeling, Conceptual Design Phase, Conceptual Design Analysis, Energy Modeling
series CAAD Futures
email
last changed 2017/12/01 14:38

_id sigradi2017_068
id sigradi2017_068
authors da Motta Gaspar, João Alberto; Regina Coeli Ruschel
year 2017
title A evolução do significado atribuído ao acrônimo BIM: Uma perspectiva no tempo [The evolution of the meaning ascribed to the acronym BIM: A perspective in time]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.461-469
summary The term Building Information Model emerged in 1992. It has evolved over time and has its meaning currently associated with an object-oriented modeling technology and an associated set of processes to produce, communicate and analyze building models. Its origin is related to several other, older terms. This paper registers the evolution of BIM and related definitions over time by means of a systematic literature review. We present a list of BIM-related terms and their meanings, organized by date of emergence, and charts showing which ones are most used over time, contributing to better understanding of the meaning of BIM.
keywords BIM; History of BIM; Building Information Model.
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_932591 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002