CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 492

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
doi https://doi.org/10.52842/conf.acadia.2017.238
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia17_248
id acadia17_248
authors Felbrich, Benjamin; Fru?h, Nikolas; Prado, Marshall; Saffarian, Saman; Solly, James; Vasey, Lauren; Knippers, Jan; Menges, Achim
year 2017
title Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures
doi https://doi.org/10.52842/conf.acadia.2017.248
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 248-259
summary Fiber composite materials have tremendous potential in architectural applications due to their high strength-to-weight ratio and their ability to be formed into complex shapes. Novel fabrication processes can be based on the unique affordances and characteristics of fiber composites. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet long-range machines—such as unmanned aerial vehicles (UAV)—with strong, precise, yet limited-reach industrial robots. This collaborative concept enables a scalable fabrication setup for long-span fiber composite construction. This paper describes the integrated design process and design development of a large-scale cantilevering demonstrator, in which the fabrication setup, robotic constraints, material behavior, and structural performance were integrated in an iterative design process.
keywords material and construction; fabrication; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:50

_id ecaade2017_054
id ecaade2017_054
authors Abramovic, Vasilija, Glynn, Ruairi and Achten, Henri
year 2017
title ROAMNITURE - Multi-Stable Soft Robotic Structures
doi https://doi.org/10.52842/conf.ecaade.2017.1.327
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 327-336
summary The rise in robotics is not only changing fabrication research in architecture but increasingly providing opportunities for animating the materiality of architecture, offering responsive, performative and adaptive design possibilities for the built environment. A fundamental challenge with robotics is its suitability to safe, and comfortable use in proximity to the human body. Here we present the preliminary results of the Roamniture Project, a hybrid approach to developing kinetic architecture based on a combination of rigid and soft body dynamics.
keywords Kinetic Architecture; Soft Robotics; Soft Architecture; Furniture
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_82
id acadia17_82
authors Andreani, Stefano; Sayegh, Allen
year 2017
title Augmented Urban Experiences: Technologically Enhanced Design Research Methods for Revealing Hidden Qualities of the Built Environment
doi https://doi.org/10.52842/conf.acadia.2017.082
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 82-91
summary The built environment is a complex juxtaposition of static matter and dynamic flows, tangible objects and human experiences, physical realities and digital spaces. This paper offers an alternative understanding of those dichotomies by applying experimental design research strategies that combine objective quantification and subjective perception of urban contexts. The assumption is that layers of measurable datasets can be afforded with personal feedback to reveal "hidden" characteristics of cities. Drawing on studies from data and cognitive sciences, the proposed method allows us to analyze, quantify and visualize the individual experience of the built environment in relation to different urban qualities. By operating in between the scientific domain and the design realm, four design research experiments are presented. Leveraging augmenting and sensing technologies, these studies investigate: (1) urban attractors and user attention, employing eye-tracking technologies during walking; (2) urban proxemics and sensory experience, applying proximity sensors and EEG scanners in varying contexts; (3) urban mood and spatial perception, using mobile applications to merge tangible qualities and subjective feelings; and (4) urban vibe and paced dynamics, combining vibration sensing and observational data for studying city beats. This work demonstrates that, by adopting a multisensory and multidisciplinary approach, it is possible to gain a more human-centered, and perhaps novel understanding of the built environment. A lexicon of experimented urban situations may become a reference for studying different typologies of environments from the user experience, and provide a framework to support creative intuition for the development of more engaging, pleasant, and responsive spaces and places.
keywords design methods; information processing; art and technology; hybrid practices
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2017_148
id ecaade2017_148
authors Baseta, Efilena, Sollazzo, Aldo, Civetti, Laura, Velasco, Dolores and Garcia-Amorós, Jaume
year 2017
title Photoreactive wearable: A computer generated garment with embedded material knowledge - A computer generated garment with embedded material knowledge
doi https://doi.org/10.52842/conf.ecaade.2017.2.317
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 317-326
summary Driven by technology, this multidisciplinary research focuses on the implementation of a photomechanical material into a reactive wearable that aims to protect the body from the ultraviolet radiation deriving from the sun. In this framework, the wearable becomes an active, supplemental skin that not only protects the human body but also augments its functions, such as movement and respiration. The embedded knowledge enables the smart material to sense and exchange data with the environment in order to passively actuate a system that regulates the relation between the body and its surroundings in an attempt to maintain equilibrium. The design strategy is defined by 4 sequential steps: a) The definition of the technical problem, b) the analysis of the human body, c) the design of the reactive material system, as well as d) the digital simulations and the digital fabrication of the system. The aforementioned design strategies allow for accuracy as well as high performance optimization and predictability in such complex design tasks, enabling the creation of customized products, designed for individuals.
keywords smart materials; wearable technology; data driven design; reactive garment; digital fabrication; performance simulations
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201715106
id ijac201715106
authors Cardoso Llach, Daniel; Ardavan Bidgoli and Shokofeh Darbari
year 2017
title Assisted automation: Three learning experiences in architectural robotics
source International Journal of Architectural Computing vol. 15 - no. 1, 87-102
summary Fueled by long-standing dreams of both material efficiency and aesthetic liberation, robots have become part of mainstream architectural discourses, raising the question: How may we nurture an ethos of visual, tactile, and spatial exploration in technologies that epitomize the legacies of industrial automation—for example, the pursuit of managerial efficiency, control, and an ever-finer subdivision of labor? Reviewing and extending a growing body of research on architectural robotics pedagogy, and bridging a constructionist tradition of design education with recent studies of science and technology, this article offers both a conceptual framework and concrete strategies to incorporate robots into architectural design education in ways that foster a spirit of exploration and discovery, which is key to learning creative design. Through reflective accounts of three learning experiences, we introduce the notions “assisted automation” and “robotic embodiment” as devices to enrich current approaches to robot–human design, highlighting situated and embodied aspects of designing with robotic machines.
keywords Design education, architectural robotics, computational design, robot–human collaboration, studies of science and technology
series other
type normal paper
email
last changed 2019/08/02 08:28

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_229
id ecaade2017_229
authors Decker, Martina
year 2017
title Soft Human Computer Interfaces - Towards Soft Robotics in Architecture
doi https://doi.org/10.52842/conf.ecaade.2017.2.739
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 739-744
summary The emergence of media infused facades and new human computer interfaces have been of great interest in architecture in the recent decades. Most of the emerging examples are geared towards a multi-dimensional graphical output and most commonly stimulate our sense of sight. This paper explores recent developments in soft robotics and material sciences, developed at the Material Dynamics Lab at NJIT, that will allow the human computer interfaces to engage its users by captivating a multitude of senses simultaneously. Furthermore, this paper will contemplate future trajectories for the novel material strategies to improve human-computer or human-robot interaction, that one day may lead to truly robotic architectures.
keywords Soft Robotics; Nanotechnology; Smart Materials; Robotic Architecture; Human Computer Interfaces (HCI); Graphical User Interfaces (GUI) to Tangible User Interfaces (TUI)
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_116
id ecaade2017_116
authors Dickey, Rachel
year 2017
title Ontological Instrumentation in Architecture - A Collection of Prototypes Engaging Bodies and Machines from the Inside Out
doi https://doi.org/10.52842/conf.ecaade.2017.2.667
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 667-672
summary This paper provides a theoretical discourse on ontological instruments in design by exploring the ways in which design and technology might help get us back to an understanding of our own humanity. The intent of this theoretical discourse is to illuminate the possibilities of what can be, by looking at history as a way to see the world with perspective and as a predictor of what may happen. Another objective is to demonstrate the proof of those possibilities through the presentation of two design research projects which actualize those ideas. The first project is a prototype for an interactive chair that explores the calming effects of conscious and synchronized breathing. The second project is a reinterpretation of the veil and explores the relationship between the individual and the public. Both projects are artistic and performative in character and are embedded in a theoretical discourse on ontological instruments and investigate the opportunities of interaction of the human body with the environment moderated by technology.
keywords prosthesis; cyborgs; robots; technology; humanity; culture
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2017_163
id caadria2017_163
authors Kalantari, Saleh and Saleh Tabari, Mohammad Hassan
year 2017
title GrowMorph: Bacteria Growth Algorithm and Design
doi https://doi.org/10.52842/conf.caadria.2017.479
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 479-487
summary GrowMorph is an ongoing research project that addresses the logic of bacterial cellular growth and its potential uses in architecture and design. While natural forms have always been an inspiration for human creativity, contemporary technology and scientific knowledge can allow us to advance the principle of biomimesis in striking new directions. By examining various patterns of bacterial growth, including their parametric logic, their use of responsive membranes and scaffolding structures, and their environmental fitness, this research creates new algorithmic design and construction models that can be applied through digital fabrication. Based on data from confocal microscopy, simulations were created using programming language Processing to model the environmental responses and morphology of the bacteria's growth. To demonstrate the utility of the results, the simulations created in this research were used to design an organically shaped pavilion and to suggest a new digital knitting process for material construction. The results from the study can inspire designers to make use of bacterial growth logic in their work, and provide them with practical tools for this purpose. Potential applications include novel designs for responsive surfaces, new fabrication processes, and unique spatial structures in future architectural work.
keywords Synthetic Biology; Architecture; Bio-fabrication; Bio-constructs; Design Computation
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
doi https://doi.org/10.52842/conf.acadia.2017.330
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id ecaade2017_129
id ecaade2017_129
authors Li, Qinying and Teng, Teng
year 2017
title Integrated Adaptive and Tangible Architecture Design Tool
doi https://doi.org/10.52842/conf.ecaade.2017.1.619
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
summary In this paper, we identified two majority issues of current CAAD development situating from the standpoint of CAAD history and the nature of design. On one hand, current CAAD tools are not adaptive enough for early design stage, since most of CAAD tools are designed to be mathematical correct. as we conducted a detailed survey of CAAD development history, we find out that most of the techniques of Computer-Aided Design applied into architecture are always adopted from engineering track. On other hand, the interaction between Architects/Designer and CAAD tools needs to be enhanced. Design objects are operated by 2d based tools such as keyboard, mouse as well as monitors which are less capable of comprehensively representing physical 3D building objects. In addition, we proposed a working in progress potential solution with HCI approaches to fix these issues. We summarize that , the prototype proved that architects and designers could benefit from utilizing adaptive and tangible design tools, especially during massing studies in the early phases of architectural design.
keywords CAAD development,; Human Computer Interaction; Tangible User Interfaces; Design Tool development; Design Process
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia17_382
id acadia17_382
authors Melenbrink, Nathan; Kassabian, Paul; Menges, Achim; Werfel, Justin
year 2017
title Towards Force-aware Robot Collectives for On-site Construction
doi https://doi.org/10.52842/conf.acadia.2017.382
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 382- 391
summary Due to the irregular and variable environments in which most construction projects take place, the topic of on-site automation has previously been largely neglected in favor of off-site prefabrication. While prefabrication has certain obvious economic and schedule benefits, a number of potential applications would benefit from a fully autonomous robotic construction system capable of building without human supervision or intervention; for example, building in remote environments, or building structures whose form changes over time. Previous work using a swarm approach to robotic assembly generally neglected to consider forces acting on the structure, which is necessary to guarantee against failure during construction. In this paper we report on key findings for how distributed climbing robots can use local force measurements to assess aspects of global structural state. We then chart out a broader trajectory for the affordances of distributed on-site construction in the built environment and position our contributions within this research agenda. The principles explored in simulation are demonstrated in hardware, including solutions for force-sensing as well as a climbing robot.
keywords material and construction; physics; construction/robotics; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia17_426
id acadia17_426
authors Moorman, Andrew
year 2017
title Pattern Making and Learning: Non-Routine Practices in Generative Design
doi https://doi.org/10.52842/conf.acadia.2017.426
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 426- 435
summary We now witness an upsurge in mainstream generative design tools fortified by simulation that speed up the concealed linear synthesis of optimized design alternatives. In pursuit of optimality, these tools saturate local machines or cloud servers with analysis and design iteration data, only to discard it once the procedure has concluded. Largely absent, however, are tools for an active, adaptive relationship with design exploration and the reuse of corresponding design data and metadata. In Pattern Making and Pattern Learning, we propose that these characteristics are mutually beneficial. This paper presents a series of revisions to the optimization framework for routine design synthesis that examine a potential symbiosis between the production of large datasets (big data) and non-routine practices of making in design. Our engagement with iterative design exercises is twofold: as a supply of computer-generated design information to foster user intuition and explore the design space on non-objective terms, and as a supply of human-generated design information to learn artifacts of user preference in the interest of design software personalization. These concepts are applied to the generation of functionally graded patterning in chair design, combining methods of physical production with programmable sheet material behavior through a custom interactive synthesis framework.
keywords design methods; information processing; ai & machine learning; simulation & optimization; generative system
series ACADIA
email
last changed 2022/06/07 07:58

_id ijac201715105
id ijac201715105
authors Nahmad Vazque, Alicia and Wassim Jabi
year 2017
title Investigations in robotic-assisted design: Strategies for symbiotic agencies in material-directed generative design processes
source International Journal of Architectural Computing vol. 15 - no. 1, 70-86
summary The research described in this article utilises a phase-changing material, three-dimensional scanning technologies and a six-axis industrial robotic arms as vehicles to enable a novel framework where robotic technology is utilised as an ‘amplifier’ of the design process to realise geometries that derive from both constructive visions and architectural visions through iterative feedback loops between them. The robot in this scenario is not a fabrication tool but the enabler of an environment where the material, robotic and human agencies interact. This article describes the exploratory research for the development of a dialogic design process, sets the framework for its implementation, carries out an evaluation based on designer use and concludes with a set of observations. One of the main findings of this article is that a deeper collaboration that acknowledges the potential of these tools, in a learning-by-design method, can lead to new choreographies for architectural design and fabrication.
keywords Robotic fabrication, human-machine networks, digital design, agency
series other
type normal paper
email
last changed 2019/08/02 08:28

_id sigradi2017_099
id sigradi2017_099
authors Panagoulia, Eleanna
year 2017
title Human – Centered Approaches in Urban Analytics and Placemaking
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.692-698
summary Planning for resilience and enabling positive design outcomes requires combinatory methods of working with data, in order to assist decision-makers develop evidence-based methodologies and easily communicated scenarios. The staggering rise of technology integration and data-aided analysis tools in urban planning, not only facilitates our understanding of socio-economic flux, but attempts to actively involve users as a way of creating environments that are more responsive and appropriate to their needs. This paper aims to contribute to the discourse on user involvement in design-oriented fields, in our case, urban planning, by analyzing two different approaches of participatory design.
keywords User-Centric Design; Open-Data; Participation; Evaluation; ‘Reblock’
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2017_122
id ecaade2017_122
authors Peralta, Mercedes and Loyola, Mauricio
year 2017
title Performative Materiality - A DrawBot for Materializing Kinetic Human-Machine Interaction in Architectural Space
doi https://doi.org/10.52842/conf.ecaade.2017.1.611
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 611-618
summary This paper presents an exploration of movement as a design material to evidence human-machine interaction in an architectural space. An autonomous robotic vehicle with environmental sensory capabilities interacts kinetically with people by recognizing their emotional states from their body postures. A drawing device installed in the vehicle leaves a trace on the floor as a material testimony to the mutual dynamics. The complex yet surprisingly intuitive choreographic interaction of the machine and its social and physical environment blurs the boundaries between drawing, machine, and performance. In general, the project conceptualizes movement as a design material, drawing as a performative action, and social interaction as a physical force, all of which can be enhanced or mediated by digital technologies to produce results with aesthetic value.
keywords Human-Machine Interaction; Drawing Machine; Performance Design
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2017_042
id cf2017_042
authors Pinochet, Diego
year 2017
title Discrete Heuristics: Digital design and fabrication through shapes and material computation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 42.
summary In the case of designers, architects and arts, tools are part of a repertoire of cognitive, symbolic, and semiotic artifacts with which each explores and learn about design problems. Nonetheless, when using digital fabrication tools, a dichotomy between what is ideated and what is made appears as an evident problem since many of the perceptual aspects of sensing and thinking about new things in the making are neglected. It is argued that this establishes a dichotomy between what is ideated and what is executed as an outcome from that idea. How designers can think, learn and augment their creativity by using digital tools in a more relational, exploratory, interactive and creative way? Furthermore, how can we teach design using contemporary fabrication tools beyond its representational capabilities? This paper explores the richness of using digital fabrication tools through the lens of shapes grammars as a design paradigm in order to extend computational making including digital fabrication tools, gestures and material behavior as crucial actors of the design process. Through the use of discrete heuristics - that is, the elaboration of deictic rules for computation with physical objects, materials and fabrication tools in a precise yet perceptual way- this paper shows experiments inside a third year design studio to overcome the hylomorphism present in the digital design and make dichotomy.
keywords Digital fabrication, Computational making, Human computer interaction, Shape grammars
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
doi https://doi.org/10.52842/conf.acadia.2017.512
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_96744 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002