CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 545

_id ecaade2017_184
id ecaade2017_184
authors Almeida, Daniel and Sousa, José Pedro
year 2017
title Tradition and Innovation in Digital Architecture - Reviewing the Serpentine Gallery Pavilion 2005
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 267-276
doi https://doi.org/10.52842/conf.ecaade.2017.1.267
summary Please write your aToday, in a moment when digital technologies are taking command of many architectural design and construction processes, it is important to examine the place and role of traditional ones. Designed by Álvaro Siza and Eduardo Souto de Moura in collaboration with Cecil Balmond, the Serpentine Gallery Pavilion 2005 reflects the potential of combining those two different approaches in the production of innovative buildings. For inquiring this argument, this paper investigates the development of this project from its conception to construction with a double goal: to uncover the relationship between analogical and digital processes, and to understand the architects' role in a geographically distributed workflow, which involved the use of computational design and robotic fabrication technologies. To support this examination, the authors designed and fabricated a 1:3 scale prototype of part of the Pavilion, which also served to check and reflect on the technological evolution since then, which is setting different conditions for design development and collaboration.bstract here by clicking this paragraph.
keywords Serpentine Gallery Pavilion; Computational Design; Digital Fabrication; Wooden Construction; Architectural Representation;
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
doi https://doi.org/10.52842/conf.caadria.2019.2.451
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
doi https://doi.org/10.52842/conf.caadria.2017.467
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2017_028
id sigradi2017_028
authors Dileta Pacini, Giordana; Andrés Martin Passaro, Gonçalo Castro Henriques
year 2017
title Fab!t, Pavilhão Itinerante de Ensino: Proposta para inserção da cultura maker no ensino tradicional [Fab!t, Itinerant Teaching Pavilion: a proposal to include the maker culture in traditional education]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.198-206
summary This project intends to introduce the maker culture into traditional education. The goal is to make technology teaching available in elementary education in a fast, cheap and egalitarian way, seeking to democratize its access and use it to integrate maker culture's principles into traditional school. For that several existing makerspaces and fab labs programs’ were studied to identify the core activities and equipments to support this proposal. Its contribution is an adaptable modular system with a demountable construction platform to foster customized spaces. The system is manufactured to enable the expansion and retraction of the structure allowing its future reuse.
keywords Maker culture; Digital fabrication; Parametric design; Temporary architecture; Maker education
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2017_021
id sigradi2017_021
authors Frogheri, Daniela; Fernando Meneses-Carlos, Alberto T. Estévez
year 2017
title Arquitectura sensible en relación con el contexto: Mimesis y proxémica como formas de comunicación. [Sensitive Architecture in relationship with the context: Mimesis and proxemics as a kind of communication.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.153-160
summary This paper presents a research of the relationship between architecture and context applied to the development of a sensitive pavilion that receives data from live sensors, responds and adapts in real time, generating a biunivocal resilience between the architectural object and the context. The research is developed through the integration between morphogenesis processes, parametric-generative design, Arduino, sensors, input and output devices that connect data and matter, programming and digital fabrication.The result is a pavilion designed and fabricated digitally, that receives data of the environment in real time through sensors and that reacts through changes of color and movements.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_163
id caadria2017_163
authors Kalantari, Saleh and Saleh Tabari, Mohammad Hassan
year 2017
title GrowMorph: Bacteria Growth Algorithm and Design
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 479-487
doi https://doi.org/10.52842/conf.caadria.2017.479
summary GrowMorph is an ongoing research project that addresses the logic of bacterial cellular growth and its potential uses in architecture and design. While natural forms have always been an inspiration for human creativity, contemporary technology and scientific knowledge can allow us to advance the principle of biomimesis in striking new directions. By examining various patterns of bacterial growth, including their parametric logic, their use of responsive membranes and scaffolding structures, and their environmental fitness, this research creates new algorithmic design and construction models that can be applied through digital fabrication. Based on data from confocal microscopy, simulations were created using programming language Processing to model the environmental responses and morphology of the bacteria's growth. To demonstrate the utility of the results, the simulations created in this research were used to design an organically shaped pavilion and to suggest a new digital knitting process for material construction. The results from the study can inspire designers to make use of bacterial growth logic in their work, and provide them with practical tools for this purpose. Potential applications include novel designs for responsive surfaces, new fabrication processes, and unique spatial structures in future architectural work.
keywords Synthetic Biology; Architecture; Bio-fabrication; Bio-constructs; Design Computation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_185
id caadria2017_185
authors McGinley, Tim, Abroe, Brett, Kroll, David, Murphy, Matt, Sare, Tessa and Gu, Ning
year 2017
title Agile X UniSA Pavilion: Agile Principles and the Parametric Paradox
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 169-178
doi https://doi.org/10.52842/conf.caadria.2017.169
summary The world is experiencing an ever increasing pace of change and yet our design processes typically follow a waterfall model that make can make change and adaptation difficult. Digital design approaches provide an opportunity to develop agile solutions that are more open to change in the design process. This paper proposes the development of immaterial architectures wherein the material expression is left to later in the design process when there is greater certainty. We describe a series of 3 workshops that employ aspects of agile software development methodologies into architecture. The workshops proposed 3 immaterial pavilions for Delft, Adelaide and Tianjin. This first cycle of three workshops resulted in the design, fabrication and installation of the Agile X UniSA Pavilion in Adelaide. This paper discusses the applicability of agile development methodologies to this process and details a series of adaptations to provide a set of appropriate agile development principles for architecture.
keywords Agile; Architecture pavilion; Immaterial architecture; Parametric paradox; Collaboration
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2017_138
id ecaade2017_138
authors Nerla, Maria Giuditta, Erioli, Alessio and Garai, Massimo
year 2017
title Modulated corrugations by differential growth - Integrated FRP tectonics towards a new approach to sustainability, fusing architectural and energy design for a new students’ space
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 593-602
doi https://doi.org/10.52842/conf.ecaade.2017.2.593
summary This Master Thesis research investigates the concept of 'integrated tectonics' as a new way of thinking sustainability in architecture, intended as an ecology of different, integrated factors which take part in a seamless design-to-fabrication process. In particular, this new paradigm is applied to the design of a pavilion made of a fiber-reinforced (FRP) sandwich shell integrating multiple systems and performances. A differential growth algorithm mimicking cellular tissue development modulates performance across the surface through ornamental features in the form of corrugated patterns. Iterative feedback simulations allow the exploration of the mutual relations connecting morphogenesis and performance distribution patterns at the architectural scale. Problems connected to simulation inaccuracies and difficult software integration are discussed. A 1:2 scale prototype of a shell portion was fabricated to test material properties and production feasibility.
keywords Fiber-reinforced polymers (FRP); integrated tectonics; differential growth; composite materials; ecology; sustainability
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_102
id ecaadesigradi2019_102
authors Passsaro, Andres Martin, Henriques, Gonçalo Castro, Sans?o, Adriana and Tebaldi, Isadora
year 2019
title Tornado Pavilion - Simplexity, almost nothing, but human expanded abilities
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
doi https://doi.org/10.52842/conf.ecaade.2019.1.305
summary In the context of the fourth industrial revolution, not all regions have the same access to technology for project development. These technological limitations do not necessarily result in worst projects and, on the contrary, can stimulate creativity and human intervention to overcome these shortcomings. We report here the design of a small pavilion with scarce budget and an ambitious goal to qualify a space through tactical urbanism. We develop the project in a multidisciplinary partnership between academy and industry, designing, manufacturing and assembling Tornado Pavilion, a complex structure using combined HIGH-LOW technologies, combining visual programming with analog manufacture and assembly. The design strategy uses SIMPLEXITY with ruled surfaces strategy to achieve a complex geometry. Due to the lack of automated mechanical cutting or assembly, we used human expanded abilities for the construction; instead of a swarm of robots, we had a motivated and synchronized swarm of students. The pavilion became a reference for local population that adopted it. This process thus shows that less or almost nothing (Sola-Morales 1995), need not to be boring (Venturi 1966) but less can be much more (Kolarevic 2017).
keywords Simplexity; CAD-CAM; Ruled Surfaces; expanded abilities; pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia17_522
id acadia17_522
authors Sarafian, Joseph; Culver, Ronald; Lewis, Trevor S.
year 2017
title Robotic Formwork in the MARS Pavilion: Towards The Creation Of Programmable Matter
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 522- 533
doi https://doi.org/10.52842/conf.acadia.2017.522
summary The proliferation of parametric tools has allowed for the design of previously impossible geometry, but the construction industry has failed to keep pace. We demonstrate the use of industrial robots to disrupt the ancient process of casting concrete and create an adjustable formwork capable of generating various cast components based on digital input, crafting a new approach to “programmable matter.” The resulting research delineates a novel methodology to facilitate otherwise cost-prohibitive, even impossible design. The MARS Pavilion employs this methodology in a building-sized proof of concept where manipulating fabric with industrial robots achieves previously unattainable precision while casting numerous connective concrete components to form a demountable lattice structure. The pavilion is the result of parametric form finding, in which a catenary structure ensures that the loads are acting primarily in compression. Every concrete component is unique, yet can be assembled together with a 1/16-inch tolerance. Expanding Culver & Sarafian’s previous investigations, industrial robot arms are sent coordinates to position fabric sleeves into which concrete is poured, facilitating a rapid digital-to-physical casting process. With this fabrication method, parametric variation in design is cost-competitive relative to other iterative casting techniques. This digital breakthrough necessitated analogue material studies of rapid-setting, high-strength concrete and flexible, integral reinforcing systems. The uniquely shaped components are coupled with uniform connectors designed to attach three limbs of concrete, forming a highly stable, compressive hex-grid shell structure. A finite element analysis (FEA) was a critical step in the structural engineering process to simulate various load scenarios on the pavilion and drive the shape of the connective elements to their optimal form.
keywords material and construction; fabrication; form finding
series ACADIA
email
last changed 2022/06/07 07:57

_id acadia17_544
id acadia17_544
authors Schleicher, Simon; La Magna, Riccardo; Zabel, Joshua
year 2017
title Bending-active Sandwich Shells: Studio One Research Pavilion 2017
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 544- 551
doi https://doi.org/10.52842/conf.acadia.2017.544
summary The goal of this paper is to advance the research on bending-active structures by investigating the system’s inherent structural characteristics and introducing an alternative approach to their design and fabrication. With this project, the authors propose the use of sandwich-structured composites to improve the load-bearing behavior of bending-active shells. By combining digital form-finding and form-conversion processes, it becomes possible to discretize a double-curved shell geometry into an assembly of single-curved sandwich strips. Due to the clever use of bending in the construction process, these strips can be made out of inexpensive and flat sheet materials. The assembly itself takes advantage of two fundamentally different structural states. When handled individually, the thin panels are characterized by their high flexibility, yet when cross-connected to a sandwich, they gain bending stiffness and increase the structure’s rigidity. To explain the possible impacts of this approach, the paper will discuss the advantages and disadvantages of bending-active structures in general and outline the potential of sandwich shells in particular. Furthermore, the authors will address the fundamental question of how to build a load-bearing system from flexible parts by using the practical example of the Studio One Research Pavilion. To illustrate this project in more detail, the authors will present the digital design process involved as well as demonstrate the technical feasibility of this approach through a built prototype in full scale. Finally, the authors will conclude with a critical discussion of the design approach proposed here and point out interesting topics for future research.
keywords material and construction
series ACADIA
email
last changed 2022/06/07 07:57

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
doi https://doi.org/10.52842/conf.acadia.2017.018
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_131
id caadria2017_131
authors Abe, U-ichi, Hotta, Kensuke, Hotta, Akito, Takami, Yosuke, Ikeda, Hikaru and Ikeda, Yasushi
year 2017
title Digital Construction - Demonstration of Interactive Assembly Using Smart Discrete Papers with RFID and AR codes
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 75-84
doi https://doi.org/10.52842/conf.caadria.2017.075
summary This paper proposes and examines a new way of cooperation between human workers and machine intelligence in architectural scale construction. For the transfer of construction information between the physical and digital world, mature technologies such as Radio Frequency IDentifier (RFID), and emerging technologies like Augmented Reality (AR) are used in parallel to supplement each other. Dynamic data flow is implemented to synchronize digital and physical models by following the ID signatures of individual building parts. The contributions of this paper includes the demonstration of current technological limitations, and the proposal of a hybrid system between human and computer, which is tested in order to explore the possibilities of digitally enhanced construction methods.
keywords Digital Construction; Augmented Reality; Human-Machine interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_054
id ecaade2017_054
authors Abramovic, Vasilija, Glynn, Ruairi and Achten, Henri
year 2017
title ROAMNITURE - Multi-Stable Soft Robotic Structures
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 327-336
doi https://doi.org/10.52842/conf.ecaade.2017.1.327
summary The rise in robotics is not only changing fabrication research in architecture but increasingly providing opportunities for animating the materiality of architecture, offering responsive, performative and adaptive design possibilities for the built environment. A fundamental challenge with robotics is its suitability to safe, and comfortable use in proximity to the human body. Here we present the preliminary results of the Roamniture Project, a hybrid approach to developing kinetic architecture based on a combination of rigid and soft body dynamics.
keywords Kinetic Architecture; Soft Robotics; Soft Architecture; Furniture
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201715301
id ijac201715301
authors Afsari, Kereshmeh; Charles Eastman and Dennis Shelden
year 2017
title Building Information Modeling data interoperability for Cloud-based collaboration: Limitations and opportunities
source International Journal of Architectural Computing vol. 15 - no. 3, 187-202
summary Collaboration within Building Information Modeling process is mainly based on the manual transfer of document files in either vendor-specific formats or neutral format using Industry Foundation Classes. However, since the web enables Cloud-based Building Information Modeling services, it provides an opportunity to exchange data with web technologies. Alternative data sharing solutions include the federation of Building Information Modeling models and an interchange hub for data exchange in real time. These solutions face several challenges, are vendor locked, and integrate Building Information Modeling applications to a third new system. The main objective of this article is to investigate current limitations as well as opportunities of Cloud interoperability to outline a framework for a loosely coupled network-based Building Information Modeling data interoperability. This study explains that Cloud-Building Information Modeling data exchange needs to deploy major components of Cloud interoperability such as Cloud application programming interfaces, data transfer protocols, data formats, and standardization to redefine Building Information Modeling data flow in Cloud-based applications and to reshape collaboration process.
keywords Building Information Modeling, Cloud, data exchange, interoperability, Industry Foundation Classes
series journal
email
last changed 2019/08/07 14:03

_id caadria2017_147
id caadria2017_147
authors Agirachman, Fauzan Alfi, Ozawa, Yo, Indraprastha, Aswin, Shinozaki, Michihiko, Sitompul, Irene Debora Meilisa, Nuraeni, Ruri, Chirstanti, Augustine Nathania, Putra, Andrew Cokro and Zefanya, Teresa
year 2017
title Reimagining Braga - Remodeling Bandung's Historical Colonial Streetscape in Virtual Reality
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2017.023
summary This paper presents the experience of the first phase of remodeling existing historical and colonial district in Bandung, Indonesia, including existing building façade, streetscape and street furniture. Braga Street is chosen as study case because it is a well-known historical street in Bandung with art deco style buildings constructed during Dutch colonial era. By remodeling it, it could help stakeholders to evaluate existing Braga street condition, to test any modification of buildings along the street and to determine specific regulation for the street. In this case, we use Unity3D and Oculus Rift DK2 for remodeling current situation. We gathered feedback from respondents using a questionnaire given after they experienced the model in VR. Many lessons learned from modeling process and respondents' feedback: higher frame rate to make seamless VR experience by having all components on a low poly model and provide smoother movement to prevent visual discomfort. This paper's conclusion gives suggestions for anyone who want to start architecture modeling in virtual reality for the very first time and how to optimize it.
keywords Virtual reality; historical building; digital reconstruction; streetscape
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715203
id ijac201715203
authors Agirbas, Asli and Emel Ardaman
year 2017
title Macro-scale designs through topological deformations in the built environment
source International Journal of Architectural Computing vol. 15 - no. 2, 134-147
summary Design studies are being done on contemporary master-plans which may be applied in many locations worldwide. Advances in information technology are becoming the base model of design studies, and these may be more effective than the efforts of humans in the field of architecture and urban design. However, urban morphology variables and constants must be considered while designing contemporary master-plans in the existing built environment. The aims of this study were to extend the use of computer software for different applications and to make a topological work in the regional context. Accordingly, a case study was made using the nCloth simulation tools to create non-Euclidean forms while protecting the road system, which is one of the constant parameters of urban morphology in the built environment.
keywords Conceptual design, built environment, simulation, contemporary master-plans, urban morphology, topology
series other
type normal paper
email
last changed 2019/08/02 08:30

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_415076 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002