CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 573

_id ecaade2017_129
id ecaade2017_129
authors Li, Qinying and Teng, Teng
year 2017
title Integrated Adaptive and Tangible Architecture Design Tool
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
doi https://doi.org/10.52842/conf.ecaade.2017.1.619
summary In this paper, we identified two majority issues of current CAAD development situating from the standpoint of CAAD history and the nature of design. On one hand, current CAAD tools are not adaptive enough for early design stage, since most of CAAD tools are designed to be mathematical correct. as we conducted a detailed survey of CAAD development history, we find out that most of the techniques of Computer-Aided Design applied into architecture are always adopted from engineering track. On other hand, the interaction between Architects/Designer and CAAD tools needs to be enhanced. Design objects are operated by 2d based tools such as keyboard, mouse as well as monitors which are less capable of comprehensively representing physical 3D building objects. In addition, we proposed a working in progress potential solution with HCI approaches to fix these issues. We summarize that , the prototype proved that architects and designers could benefit from utilizing adaptive and tangible design tools, especially during massing studies in the early phases of architectural design.
keywords CAAD development,; Human Computer Interaction; Tangible User Interfaces; Design Tool development; Design Process
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia17_284
id acadia17_284
authors Hu, Zhengrong; Park, Ju Hong
year 2017
title HalO [Indoor Positioning Mobile Platform]: A Data-Driven, Indoor-Positioning System With Bluetooth Low Energy Technology To Datafy Indoor Circulation And Classify Social Gathering Patterns For Assisting Post Occupancy Evaluation
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 284-291
doi https://doi.org/10.52842/conf.acadia.2017.284
summary Post-Occupancy Evaluation (POE) as an integrated field between architecture and sociology has created practical guidelines for evaluating indoor human behavior within a built environment. This research builds on recent attempts to integrate datafication and machine learning into POE practices that may one day assist Building Information Modeling (BIM) and multi-agent modeling. This research is based on two premises: 1) that the proliferation of Bluetooth Low Energy (BLE) technology allows us to collect a building user’s data cost-effectively and 2) that the growing application of machine learning algorithms allows us to process, analyze and synthesize data efficiently. This study illustrates that the mobile platform HalO can serve as a generic tool for datafication and automation of data analysis of the movement of a building user. In this research, the iOS mobile application HalO, combined with BLE beacons enable building providers (architects, developers, engineers and facility managers etc.) to collect the user’s indoor location data. Triangulation was used to pinpoint the user’s indoor positions, and k-means clustering was applied to classify users into different gathering groups. Through four research procedures—Design Intention Analysis, Data Collection, Data Storage and Data Analysis—the visualized and classified data helps building providers to better evaluate building performance, optimize building operations and improve the accuracy of simulations.
keywords design methods; information processing; data mining; IoT; AI; machine learning
series ACADIA
email
last changed 2022/06/07 07:49

_id ecaade2017_301
id ecaade2017_301
authors Kalantari, Saleh and Ghandi, Mona
year 2017
title Data-responsive Architectural Design Processes
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 503-512
doi https://doi.org/10.52842/conf.ecaade.2017.2.503.2
summary Current advancements in information technology and mechanical components offer incredible new possibilities for innovation in architecture. Many aspects of our physical environment are becoming integrated with information systems, a phenomenon that has been referred to as the "Internet of Things." The implications and applications of this technology are far-reaching, and students who are learning about design in today's environment have a bewildering array of new tools available for their exploration. This paper reviews some of the central concepts of contemporary data-driven design, and describes how these concepts can be used in a pedagogical framework to encourage student innovation. The authors provide details about their work with students in IDR Studios, and highlight some of the innovative design solutions created by students using information-based toolsets. This research provides a pedagogical framework for helping design students to engage with new technological resources as they work to develop the architectural intelligence.
keywords Adaptive Systems; Internet of Things; Big Data; Data Driven Design Process
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2017_036
id sigradi2017_036
authors Martins Alessio, Pedro; Letícia Teixeira Mendes, Natal Chicca Junior, Maria Eduarda Duarte, Rabelo
year 2017
title Prototipagem Digital como recurso de ensino: Uma experiência pedagógica de projetos para turmas integradas de design, arquitetura e expressão gráfica [Digital prototyping as a teaching tool: A project-based pedagogical experience for integrated classes of design, architecture and graphic expression]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.249-255
summary We present a teaching experiment involving the use of digital prototyping technologies in a pedagogical method inspired on the challenge based learning method. This method is a problem-based-learning improvement relying on the autonomy of the student to identify subjects and problems of their interest instead of solving ready ones presented by teachers. Our study evaluates the use of the method for teaching design and project support tools. The classes took place in the Federal University of Pernambuco with students from different areas as architecture, mechanical engineering and design. The usage of this method leads to rich and creative solutions that could be concretized in the form of prototypes created with rapid prototyping and digital fabrication technologies.
keywords Problem-Based-Learning; Digital prototyping; teaching methods.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_456
id acadia17_456
authors Page, Mitchell
year 2017
title A Robotic Fabrication Methodology for Dovetail and Finger Jointing: An Accessible & Bespoke Digital Fabrication Process for Robotically-Milled Dovetail & Finger Joints
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 456- 463
doi https://doi.org/10.52842/conf.acadia.2017.456
summary Since the advent of industrialized processes in modern construction industries, the development of and relationship between computer-aided tools of design and computer-controlled tools of fabrication has steadily yielded new and innovative construction methodologies. Whilst industry has adopted many of these innovations for use by highly efficient machines and flexible processes, their operation is often highly dependent on industrial scales of production, and thus often inaccessible for small-scale, bespoke and affordable application. The prototype integrated joint milling methodology, case study and open-source software plugin ‘Dove’ presented in this paper, explores the efficacy of algorithmic processes in dynamically generating complex tooling paths and machine code for fabrication of bespoke dovetail and finger joints on a 6-axis industrial robot. The versatility, speed and precision of 6-axis robotic milling, allows us to liberate the efficiency, integrity and aesthetic of the dovetail and finger joint types from traditional application, and apply them to new architectures involving mass-customisation, complex form, and diverse materialities. In the development of full-immersion milling toolpaths and back-face filleting techniques that drastically reduce cutting times, tool path complexity and material waste, this study seeks to build upon past and current research by proposing a comparatively simple, efficient and more intuitive approach to robotically-fabricated integrated jointing for application at a variety of scales.
keywords material and construction; fabrication; construction/robotics; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
doi https://doi.org/10.52842/conf.acadia.2018.444
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id cf2017_630
id cf2017_630
authors Muehlbauer, Manuel; Song, Andy; Burry, Jane
year 2017
title Towards Intelligent Control in Generative Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 630-647.
summary This position paper proposes and defines the nature of a framework, which explores ways of integrating control system (CS) with machine intelligence for generative design (GD). This paper elaborates about the implications of and the potential for impact on GD. The framework described in this work can be used as an active tool to drive design processes and support decision making process in early stages of architectural design. This type of system can be either automated in nature or adaptive to regular user input as part of interactive design mechanisms. The module of CS in the framework would allow additional guidance during design and therefore reduce the need of manual input to enable a semi-automated design practice for lengthy generative processes. This study on GD reveals emergent properties of the framework, for example the introduction of intelligent control allows guidance of GD to meet specified performance criteria and intended aesthetic expressions with reduced need for user interaction.
keywords Semi-Automated Design, Evolutionary Architecture, Generative Design, Architectural Optimisation, Artificial Intelligence
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_249
id cf2017_249
authors Agirbas, Asli
year 2017
title Teaching Design by Coding in Architecture Undergraduate Education: A Case Study with Islamic Patterns
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 249-258.
summary Computer-aided design has found its role in the undergraduate education of architects, and presently design by coding is also gradually finding further prominence in accord with the increasing demand by students who wish to learn more about this topic. This subject is included in an integrated manner in some studio courses on architecture design in some schools, or it is taught separately in elsewhere. In terms of the separate course on coding, the principal difficulty is that actual applications of the method can rarely be included due to time limitations and the fact that it is conducted separately from the studio course on architecture. However, within the framework of the architectural education, in order to learn about the coding it is necessary to consider it along with the design process, and this versatile thinking can only be achieved by the application of the design. In this study, an elective undergraduate course is considered in the context of design and to yield a versatile thinking strategy while learning the language of visual programming. The course progressed under the theoretical framework of shape grammar from the design stage through to the digital fabrication process, and the experimental studies were carried out on the selected topic of Islamic pattern. A method was proposed to improve the productivity of such courses, and an evaluation of the results is presented.
keywords Islamic Patterns, Shape Grammars, Architectural Education, Parametric Design, CAAD.
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_057
id ecaade2017_057
authors Al-Qattan, Emad, Yan, Wei and Galanter, Philip
year 2017
title Tangible Computing for Establishing Generative Algorithms - A Case Study with Cellular Automata
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.1.347
summary The work presented in this paper investigates the potential of tangible interaction to setup algorithmic rules for creating computational models. The research proposes a workflow that allows designers to create complex geometric patterns through their physical interaction with design objects. The method aims to address the challenges of designers implementing algorithms for computational modeling. The experiments included in this work are prototype-based, which link a digital environment with an artifact - the physical representation of a digital model that is integrated with a Physical Computing System. The digital-physical workflow is tested through enabling users to physically setup the rules of a Cellular Automata algorithm. The experiments demonstrate the possibility of utilizing tangible interaction to setup the initial cell state and the rules of a CA algorithm to generate complex geometric patterns.
keywords Physical Computing; Tangible User-Interface; Cellular Automata
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2017_055
id caadria2017_055
authors Caetano, In?s and Leit?o, António
year 2017
title Integration of an Algorithmic BIM Approach in a Traditional Architecture Studio
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 633-642
doi https://doi.org/10.52842/conf.caadria.2017.633
summary Algorithmic BIM combines BIM and Generative Design (GD), merging the potentialities of both approaches. In this paper we describe the design process of a set of parametric facades developed using Algorithmic-BIM, and how this approach was integrated into the design workflow of two architectural studios. We demonstrate how the integration of GD together with BIM influenced the whole design process and also the selection of the final solution. Some of the limitations found during the entire process are also addressed in the paper, such as tight deadlines and financial constraints. Finally, we explain the pros and cons of using this design method compared to a traditional BIM approach, and we discuss the implementation of this paradigm in a traditional design practice. This work was developed using Rosetta, an IDE for Generative Design that supports scripts using different programming languages and allows the generation and edition of 3D models in a variety of CAD and BIM applications. The result of this work is an information model of three parametric facades for a residential building, from which we can extract material quantities and construction performance tests.
keywords Generative design; collaborative design; CAD-BIM portability; parametric facade design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_031
id ecaade2017_031
authors Castelo Branco, Renata and Leit?o, António
year 2017
title Integrated Algorithmic Design - A single-script approach for multiple design tasks
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 729-738
doi https://doi.org/10.52842/conf.ecaade.2017.1.729
summary Many great architectural endeavors today engage in a multi software approach, as each specialty involved needs a different software, and different task required from the architect, such as 3D modeling, analysis or rendering, also benefit from the use of different tools. Combining them in the same process is not always a successful endeavor. A more effective portability mechanism is needed, and Algorithmic Design (AD) has the potential to become one. This paper explores the advantages of the algorithmic approach to the design process, and proposes a methodology capable of integrating the different tools and paradigms currently used in architecture. The methodology is based on the development of a computer program that describes not only the intended model, but also additional tasks, such as the required analysis and rendering. It takes advantage of CAD, BIM and analysis tools, with little effort when it comes to the transition between them.
keywords Algorithmic Design; CAD; BIM; Analysis tools
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2017_097
id ecaade2017_097
authors Chronis, Angelos, Dubor, Alexandre, Cabay, Edouard and Roudsari, Mostapha Sadeghipour
year 2017
title Integration of CFD in Computational Design - An evaluation of the current state of the art
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 601-610
doi https://doi.org/10.52842/conf.ecaade.2017.1.601
summary The integration of building performance feedback in the design process is increasingly considered as a key aspect of the decision support framework that drives current high performance architecture, from early conception to fabrication. Although on other aspects of building performance there has been significant recent development on BPS integration in computational design, the integration of CFD is still largely unexplored, despite its significance in numerous design problems. This paper reviews the current state of advancement of integrated CFD simulation tools in computational design frameworks by evaluating three different integration approaches, each representing a different level of integration of CFD solvers within the commonly used computational design frameworks today. The objective of the study is neither to provide an extensive evaluation of all available CFD frameworks nor to assess the specific performance of the problem at hand, but rather to evaluate the potential and limitations of each integration approach from the perspective of the computational design user.
keywords Computational Fluid Dynamics; Simulation; Integration; Computational Design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_212
id acadia17_212
authors De Luca, Francesco
year 2017
title Solar Form Finding: Subtractive Solar Envelope and Integrated Solar Collection Computational Method for High-Rise Buildings in Urban Environments
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 212-221
doi https://doi.org/10.52842/conf.acadia.2017.212
summary Daylight standards contribute significantly to the form of buildings and the urban environment. Direct solar access of existing and new buildings can be considered through the use of solar envelope and solar collection isosurface methods. The first determines the maximum volume and shape that new buildings cannot exceed to guarantee the required solar rights on existing surrounding facades. The latter predicts the portion of facades of new buildings that will receive the required direct sunlight hours in urban environments. Nowadays, environmental design software based on the existing methods permits the generation of solar envelopes and solar collection isosurfaces to use in the schematic design phase. Nevertheless, the existing methods and software present significant limitations when used to design buildings that must fulfil the Estonian daylight standard. Recent research has successfully developed computational workflows based on the existing methods and available tools to tackle such shortcomings. The present work uses the findings to propose a novel computational method to generate solar envelopes and integrate solar collection analysis. It is a subtractive form-finding method that is more efficient than the existing additive methods and other recent workflows when it is applied to high-rise buildings in fragmented urban environments. The tests performed show that the new method permits the realisation of compliant and larger solar envelopes, which furthermore embed formal properties. The objective of the research is to contribute to the development of computational methods and tools to integrate direct solar access performance efficiently into the design process.
keywords design methods; information processing; simulation & optimization; form finding
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia17_238
id acadia17_238
authors El-Zanfaly, Dina
year 2017
title A Multisensory Computational Model for Human-Machine Making and Learning
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 238-247
doi https://doi.org/10.52842/conf.acadia.2017.238
summary Despite the advancement of digital design and fabrication technologies, design practices still follow Alberti’s hylomorphic model of separating the design phase from the construction phase. This separation hinders creativity and flexibility in reacting to surprises that may arise during the construction phase. These surprises often come as a result of a mismatch between the sophistication allowed by the digital technologies and the designer’s experience using them. These technologies and expertise depend on one human sense, vision, ignoring other senses that could be shaped and used in design and learning. Moreover, pedagogical approaches in the design studio have not yet fully integrated digital technologies as design companions; rather, they have been used primarily as tools for representation and materialization. This research introduces a multisensory computational model for human-machine making and learning. The model is based on a recursive process of embodied, situated, multisensory interaction between the learner, the machines and the thing-in-the-making. This approach depends heavily on computational making, abstracting, and describing the making process. To demonstrate its effectiveness, I present a case study from a course I taught at MIT in which students built full-scale, lightweight structures with embedded electronics. This model creates a loop between design and construction that develops students’ sensory experience and spatial reasoning skills while at the same time enabling them to use digital technologies as design companions. The paper shows that making can be used to teach design while enabling the students to make judgments on their own and to improvise.
keywords education, society & culture; fabrication
series ACADIA
email
last changed 2022/06/07 07:55

_id cf2017_457
id cf2017_457
authors Erdine, Elif; Kallegias, Alexandros; Lara Moreira, Angel Fernando; Devadass, Pradeep; Sungur, Alican
year 2017
title Robot-Aided Fabrication of Interwoven Reinforced Concrete Structures
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 457.
summary This paper focuses on the realization of three-dimensionally interwoven concrete structures and their design process. The output is part of an ongoing research in developing an innovative strategy for the use of robotics in construction. The robotic fabrication techniques described in this paper are coupled with the computational methods dealing with geometry rationalization and material constraints among others. By revisiting the traditional bar bending techniques, this research aims to develop a novel approach by the reduction of mechanical parts for retaining control over the desired geometrical output. This is achieved by devising a robotic tool-path, developed in KUKA|prc with Python scripting, where fundamental material properties, including tolerances and spring-back values, are integrated in the bending motion methods via a series of mathematical calculations in accord with physical tests. This research serves to demonstrate that robotic integration while efficient in manufacturing it also retains valid alignment with the architectural design sensibility.
keywords Robotic fabrication, Robotic bar bending, Concrete composite, Geometry optimization, Polypropylene formwork
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia17_248
id acadia17_248
authors Felbrich, Benjamin; Fru?h, Nikolas; Prado, Marshall; Saffarian, Saman; Solly, James; Vasey, Lauren; Knippers, Jan; Menges, Achim
year 2017
title Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 248-259
doi https://doi.org/10.52842/conf.acadia.2017.248
summary Fiber composite materials have tremendous potential in architectural applications due to their high strength-to-weight ratio and their ability to be formed into complex shapes. Novel fabrication processes can be based on the unique affordances and characteristics of fiber composites. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet long-range machines—such as unmanned aerial vehicles (UAV)—with strong, precise, yet limited-reach industrial robots. This collaborative concept enables a scalable fabrication setup for long-span fiber composite construction. This paper describes the integrated design process and design development of a large-scale cantilevering demonstrator, in which the fabrication setup, robotic constraints, material behavior, and structural performance were integrated in an iterative design process.
keywords material and construction; fabrication; construction; robotics
series ACADIA
email
last changed 2022/06/07 07:50

_id ecaade2017_029
id ecaade2017_029
authors Gadelhak, Mahmoud, Lang, Werner and Petzold, Frank
year 2017
title A Visualization Dashboard and Decision Support Tool for Building Integrated Performance Optimization
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 719-728
doi https://doi.org/10.52842/conf.ecaade.2017.1.719
summary Analyzing the results of multi-objective optimization and building performance simulation can be a very tedious process that requires navigating between different software and tools. There is a clear scarcity in visualization tools that combine methods for big data analysis and design decision support tools that integrate detailed information for each design and parameter. Having a single visualization tool that provides methods to both visualize and analyze a large amount of data, understand the relation between objectives and variables, and having the ability to compare and analyze the preferred designs thoroughly can support the process of design decision making. In this paper, previous attempts to develop better data visualization tools for both integrated building simulation and optimization outputs were analyzed, then guidelines and a visualization tool prototype that can be effective in decision making and analyzing multi-objective optimizations results was presented.
keywords Multi-objective optimization; Building Performance Simulation; Simulation; Visualization tools
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2017_032
id sigradi2017_032
authors Jara-Figueroa, Rocío; Hernán Ascuí-Fernández, Roberto Burdiles-Allende, Freddy Guzmán-Garcés
year 2017
title Diseño metodológico en investigación del espacio urbano basado en el registro sonoro. Caso de estudio: Plaza de la independencia, ciudad de Concepción. [Methodological design for urban space research based on sound recording. Case study: Plaza de la Independencia, Concepción.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.223-230
summary This work reports the results of applying phenomenological methods during the final stage of architecture studies in Universidad del Bío-Bío. The introduced case study delves in the importance of designing research methodologies that promote interdisciplinary studies to achieve an integrated view of urban phenomena. In this work, we advance the understanding of the urban space by exploring graphic resources and digital recordings to characterize the soundscape of “Plaza de la Independencia” in the city of Concepción, Chile. Our findings focus on the relationship between the urban environment, the activities that take place and the sounds recorded in the urban space.
keywords Architecture education, phenomenology, soundscape.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia17_340
id acadia17_340
authors Landim, Gabriele; Digiandomenico, Dyego; Amaro, Jean; Pratschke, Anja; Tramontano, Marcelo; Toledo, Claudio
year 2017
title Architectural Optimization and Open Source Development: Nesting and Genetic Algorithms
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 340- 349
doi https://doi.org/10.52842/conf.acadia.2017.340
summary This research presents a general overview of performance-oriented architectural design and how the rise of parametric modeling and algorithm-aided design enable an integrated environment for project design, simulation and optimization. For optimization processes, one of the most used methods in architectural problem solving is genetic algorithms (GAs). However, as the use of GAs becomes more common in the architecture, it is possible to identify a lack of clarity about the methods and procedures operated by the algorithms. Thus, this research seeks to contribute to the field through the implementation of an open source optimization plugin whose method of implemented algorithms, a GA and a nesting algorithm, can be accessed for evaluation, improvement and adaptation to other architectural problems. In the same way, it discusses the relevance of the openness and clarity of the methods employed in optimization processes in architecture. The proposed plugin was tested in an experiment that verified the feasibility of the development of the open source plugin and the efficiency of the method in solving the chosen architectural problem.
keywords algorithm-aided design; optimization; genetic algorithm; nesting; open source; computational / artistic cultures; generative system; simulation & optimization; design methods; information processing
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_465865 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002