CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 509

_id caadria2017_040
id caadria2017_040
authors Haslop, Blaire, Schnabel, Marc Aurel and Aydin, Serdar
year 2017
title Glitch Space - Experiments on Digital Decay to Remap the Anatomy of Glitch in 3D
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 591-600
doi https://doi.org/10.52842/conf.caadria.2017.591
summary This research informs of a series of experimental design practices for the understanding computational glitches in architecture which appears to be equivalently a 'given' as well as an 'informed'. 'Glitch-space' is introduced to navigate the discussion through a spatial interpretation of digital decay. Currently glitches are only explored as forms of 2D art. We however, look to reconnect the underlying data to its digital architectural spatial form. Our methodology a systematic iterative process of transformational change to explore design emergence on the base of computational glitches. A numerical data driven process is explored using decayed files which are turned into 3D formal expressions. In this context, stereoscopic techniques are experimented, helping understand further how glitch can be performed within a 3D virtual environment. Ultimately we explore digital architectural form existing solely in the digital realm that confidently expresses glitch in both its design process and aesthetic outcome. Thus, our research intends to bring a level of authenticity with the notion of 'glitch-space' by discussing 3D interpretations of glitch in an architectural form.
keywords Digital Decay; Glitch; Digital Design Methods; Glitch-space; Data Interpretation
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2017_059
id ecaade2017_059
authors Narangerel, Amartuvshin, Lee, Ji-Hyun and Stouffs, Rudi
year 2017
title Thermal and Daylighting Optimization of Complex 3D Faceted Façade for Office Building
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 209-218
doi https://doi.org/10.52842/conf.ecaade.2017.1.209
summary Conventional façade design and its impact on building energy as well as indoor comfort is a well-researched topic in the architecture field. This paper examines the potential of a complex 3D shaped building envelope, elaborating on previous work by implementing energy simulation within the building façade optimization process. The multi-objective optimizations are conducted considering total thermal energy, electricity generation through BIPV, and daylighting in generic single person office rooms under meteorological data of Korea and Singapore. The performance of the non-dominants is analyzed and the results show an improvement in all objectives comparing with the preliminary study.
keywords Parametric facade design; muli-objective optimization; energy optimization; daylighting; form finding
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2017_003
id ecaade2017_003
authors Yu, Kuai, Haeusler, M. Hank and Fabbri, Alessandra
year 2017
title Parametric master planning via topological analysis using GIS data
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 429-438
doi https://doi.org/10.52842/conf.ecaade.2017.1.429
summary This paper discusses parametricism in regards to urban planning and infrastructure. The objective is to bridge GIS data (using FLUX) and the parametric design process together into urban master planning. Creating a tool which generates the infrastructure and grid system automatically using specified manual user inputs, allowing for further generation of 3D forms from the block patterns. It also critically analyses the traditional master planning approach of grid system division in regards to topography, and how classical urban designers did not consider topographical constraints when a square grid system was employed to structure a city. The analysis of existing parametric master plans will also show that data driven planning has not put topography as a significant hierarchical. Through case studies using the developed tool, a clearer understanding of how topography can shape infrastructure can be understood. The analysis of topography is the main driving data iteration point which generates the infrastructure, grid, and division systems.
keywords Master Plan; Parametricism; Urban Design; GIS Data; Topography Optimisation; FLUX
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2017_113
id caadria2017_113
authors Huang, Weixin, Lin, Yuming and Wu, Mingbo
year 2017
title Spatial-Temporal Behavior Analysis Using Big Data Acquired by Wi-Fi Indoor Positioning System
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 745-754
doi https://doi.org/10.52842/conf.caadria.2017.745
summary Understanding of people's spatial behavior is fundamental to architectural and urban design. However, traditional investigation methods applied in environmental behavior studies is highly limited regarding the amount of samples and regions it covers, which is not sufficient for the exploration of complex dynamic human behaviors and social activities in architectural space. Only recently the developments in indoor positioning system (IPS) and big data analysis technique have made it possible to conduct a full-time, full-coverage study on human environmental behavior. Among the variety IPS systems, the Wi-Fi IPS system is increasingly widely used because it is easy to be applied with acceptable cost. In this paper, we analyzed a 60-days anonymized data set, collected by a Wi-Fi IPS system with 110 Wi-Fi access points. The analysis revealed interesting patterns on people's behavior besides temporal spatial distribution, ranging from the cyclical fluctuation in human flow to behavioral patterns of sub-regions, some of which are not easy to be identified and interpreted by the traditional field observation. Through this case study, behavioral data from IPS system has exhibited great potential in bringing about profound changes in the study of environmental behavior.
keywords environmental behavior study; Wi-Fi; indoor positioning system; big data; spatial temporal behavior; ski resort
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_412
id ecaade2018_412
authors Flanagan, Robert
year 2018
title BIM’s Complexity and Ambiguity - BIM v. Paper Architecture
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 265-270
doi https://doi.org/10.52842/conf.ecaade.2018.1.265
summary Architects rely on the graphic language of words and art to bridge intention and design, just as it has always been. Yet, passing an idea or concept from mental imagery to design practice through 2D, 3D, and 4D design filters is especially challenging in BIM technology. Severe limitations hinder or even preclude BIMs use in certain complex design tasks, as identified in the Anti-Box, "The anti-box celebrates the death of the ninety-degree angle- in fact, every angle." (de Graaf 2017). Compatibility and constraints determine the most appropriate uses of BIM software, from designing mundane shopping mall developments to complex architectural engineering feats that stagger the imagination. BIM's main benefit is in the middle when it is creatively employed by professional architects in multi-discipline collaborations, well versed in symbolic representation, of designs conceived of multivalent design factors: narrative, form, function, multi-sensory access, materiality, space, and environment.
keywords BIM; analog; HIC; Constructivist; Chernikov; photomatch
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2017_165
id caadria2017_165
authors Kalantar, Negar, Borhani, Alireza and Akleman, Ergun
year 2017
title A Simple Fabrication System for Unfolding Complex Architectural Surfaces
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 767-776
doi https://doi.org/10.52842/conf.caadria.2017.767
summary In this research, we explore the implementation of panels with a single bending direction as cylindrical surfaces; in so doing, we present our ongoing research, focusing on finding ways to simply and affordably address the problem of constructability of double-curved structures. By encoding 3D freeform surface information into a 2D workflow, our in-house software (named UNFOLDING) breaks down complex mesh structures into a number of discrete and flat quadrilaterals that can be translated into a fabrication layout. UNFOLDING provides a practical way of linking the process of production and assembly to freeform architectural design. After introducing UNFOLDING in two design studios at Texas A&M University, freshman architecture students used laser-cut quadrilateral panels to design and construct several complex forms with positive or negative Gaussian curvatures.
keywords Complex architectural surfaces; digital fabrication; quad-edge panels; unfolding; 2-manifold meshes
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2017_567
id cf2017_567
authors Kim, Ikhwan; Lee, Injung; Lee, Ji-Hyun
year 2017
title The Expansion of Virtual Landscape in Digital Games: Classification of Virtual Landscapes Through Five principles
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 567-584.
summary This research established classification system which contains five principles and variables to classify the types of the virtual landscape in digital games. The principles of the classification are Story, Space Shape, Space and Action Dimension, User Complexity and Interaction Level. With this classification system, our research group found the most representative types of virtual landscape in the digital game market through 1996 to 2016. Although mathematically there can be 288 types of virtual landscape, only 68 types have been used in the game market in recent twenty years. Among the 68 types, we defined 3 types of virtual landscape as the most representative types based on the growth curve and a number of cases. Those three representative types of virtual landscapes are Generating / Face / 3D-3D / Single / Partial, Providing / Chain / 3D-3D / Single / Partial and Providing / Linear / 2D-2D / Single / Partial. With the result, the researchers will be able to establish the virtual landscape design framework for the future research.
keywords Digital Game, Virtual Landscape, Game Design, Game Classification
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_129
id ecaade2017_129
authors Li, Qinying and Teng, Teng
year 2017
title Integrated Adaptive and Tangible Architecture Design Tool
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
doi https://doi.org/10.52842/conf.ecaade.2017.1.619
summary In this paper, we identified two majority issues of current CAAD development situating from the standpoint of CAAD history and the nature of design. On one hand, current CAAD tools are not adaptive enough for early design stage, since most of CAAD tools are designed to be mathematical correct. as we conducted a detailed survey of CAAD development history, we find out that most of the techniques of Computer-Aided Design applied into architecture are always adopted from engineering track. On other hand, the interaction between Architects/Designer and CAAD tools needs to be enhanced. Design objects are operated by 2d based tools such as keyboard, mouse as well as monitors which are less capable of comprehensively representing physical 3D building objects. In addition, we proposed a working in progress potential solution with HCI approaches to fix these issues. We summarize that , the prototype proved that architects and designers could benefit from utilizing adaptive and tangible design tools, especially during massing studies in the early phases of architectural design.
keywords CAAD development,; Human Computer Interaction; Tangible User Interfaces; Design Tool development; Design Process
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia17_474
id acadia17_474
authors Peng, Wenzhe; Zhang, Fan; Nagakura, Takehiko
year 2017
title Machines’ Perception of Space: Employing 3D Isovist Methods and a Convolutional Neural Network in Architectural Space Classification
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 474- 481
doi https://doi.org/10.52842/conf.acadia.2017.474
summary Simple and common architectural elements can be combined to create complex spaces. Different spatial compositions of elements define different spatial boundaries, and each produces a unique local spatial experience to observers inside the space. Therefore an architectural style brings about a distinct spatial experience. While multiple representation methods are practiced in the field of architecture, there lacks a compelling way to capture and identify spatial experiences. Describing an observer’s spatial experiences quantitatively and efficiently is a challenge. In this paper, we propose a method that employs 3D isovist methods and a convolutional neural network (CNN) to achieve recognition of local spatial compositions. The case studies conducted validate that this methodology works well in capturing and identifying local spatial conditions, illustrates the pattern and frequency of their appearance in designs, and indicates peculiar spatial experiences embedded in an architectural style. The case study used small designs by Mies van der Rohe and Aldo van Eyck. The contribution of this paper is threefold. First, it introduces a sampling method based on 3D Isovist that generates a 2D image that can be used to represent a 3D space from a specific observation point. Second, it employs a CNN model to extract features from the sampled images, then classifies their corresponding space. Third, it demonstrates a few case studies where this space classification method is applied to different architectural styles.
keywords design methods; information processing; AI; machine learning; computer vision; representation
series ACADIA
email
last changed 2022/06/07 08:00

_id acadia17_110
id acadia17_110
authors Arnowitz, Ethan; Morse, Christopher; Greenberg, Donald P.
year 2017
title vSpline: Physical Design and the Perception of Scale in Virtual Reality
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 110-117
doi https://doi.org/10.52842/conf.acadia.2017.110
summary Virtual reality provides a heightened sense of immersion and spatial awareness that provides a unique opportunity for designers to perceive and evaluate scale and space. At the same time, traditional sketches and small-size physical models provide tactile feedback that allow designers to create, comprehend, and explore complex geometric relationships. Through the development of vSpline, a modeling application for virtual reality, we explore the potential for design within a virtual spatial environment to blur the boundaries between digital and physical stages of design, and seek to combine the best of both virtual and analog worlds. By using spline-based closed meshes created directly in three-dimensional space, our software provides the capabilities to design, modify, and save the information in the virtual world and seamlessly convert the data to evaluate the printing of 3D physical models. We identify and discuss important questions that arise regarding relationships of perception of scale, digital-to-physical domains, and new methods of input and manipulation within a 3D immersive space.
keywords design methods; information processing; hci; vr; ar; mixed reality; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id cf2017_585
id cf2017_585
authors Ben, Yuqiang; Niblock, Chantelle; Bonenberg, Lukasz
year 2017
title Lincoln Cathedral Interactive Virtual Reality Exhibition
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 585-595.
summary This paper demonstrates a workflow converting terrestrial laser scan (TLS) data into an interactive virtual reality (VR) platform. A VR exhibition prototype of Lincoln Cathedral was created to validate the established workflow in terms of the technical and visual performance, usability, and functionality. It combined TLS data and storytelling to produce a shareable platform, inviting opportunities for public engagement, and to facilitate custodians with the tools to maintain the building’s heritage. The paper discusses the use of open sourcesoftware and suggests future work.
keywords 3D Laser Scan, Virtual Reality, User Experience, Building Heritage
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2017_051
id cf2017_051
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Parameterisation of Semantic 3D City Models for Urban Design Optimisation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 51-65.
summary We present an auto-parameterisation tool, implemented in Python, that takes in a semantic model, in CityGML format, and outputs a parametric model. The parametric model is then used for design optimisation of solar availability and urban ventilation potential. We demonstrate the tool by parameterising a CityGML model regarding building height, orientation and position and then integrate the parametric model into an optimisation process. For example, the tool parameterises the orientation of a design by assigning each building an orientation parameter. The parameter takes in a normalised value from an optimisation algorithm, maps the normalised value to a rotation value and rotates the buildings. The solar and ventilation performances of the rotated design is then evaluated. Based on the evaluation results, the optimisation algorithm then searches through the parameter values to achieve the optimal performances. The demonstrations show that the tool eliminates the need to set up a parametric model manually, thus making optimisation more accessible to designers.
keywords City Information Modelling, Conceptual Urban Design, Parametric Modelling, Performance-Based Urban Design
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2017_084
id cf2017_084
authors Chen, Kian Wee; Janssen, Patrick; Norford, Leslie
year 2017
title Automatic Generation of Semantic 3D City Models from Conceptual Massing Models
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 84-100.
summary We present a workflow to automatically generate semantic 3D city models from conceptual massing models. In the workflow, the massing design is exported as a Collada file. The auto-conversion method, implemented as a Python library, identifies city objects by analysing the relationships between the geometries in the Collada file. For example, if the analysis shows that a closed poly surface satisfies certain geometrical relationships, it is automatically converted to a building. The advantage of this workflow is that no extra modelling effort is required, provided the designers are consistent in the geometrical relationships while modelling their massing design. We will demonstrate the feasibility of the workflow using three examples of increasing complexity. With the success of the demonstrations, we envision the utoconversion of massing models into semantic models will facilitate the sharing of city models between domain-specific experts and enhance communications in the urban design process.
keywords Interoperability, GIS, City Information Modelling, Conceptual Urban Design, Collaborative Urban Design Process
series CAAD Futures
email
last changed 2017/12/01 14:37

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2017_086
id caadria2017_086
authors Koh, Immanuel, Keel, Paul and Huang, Jeffrey
year 2017
title Decoding Parametric Design Data - Towards a Heterogeneous Design Search Space Remix
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 117-126
doi https://doi.org/10.52842/conf.caadria.2017.117
summary Designers or Non-Designers are not able to effectively access, view, search, discover, collect, reuse, remix and share parametric design data (PDD) for either professional or educational purposes. PDD here refers to the meta-data of 3D models generated by visual dataflow modelling software packages used in CAD/CAM industry. This ineffectiveness is a direct consequence of the deliberately proprietary nature of most PDD file formats and the restricted use within their respective desktop-based software environments. This paper presents an initial software prototype capable of automating the process of decoding a commonly used PDD file format and then re-encoding it with new set of metrics to facilitate multiple PDD searchability, comparability and interoperability, via an integrated web interface querying a design data repository. All PDDs are conceptualized as genealogies of numerical or geometric transformations and explicitly encoded with a graph-based data structure. The goal is to eventually learn from its own big data and begin to artificially generate novel PDDs heterogeneously.
keywords Design Decoder; Design Space Exploration; Parametric Design; Visual Analytics; Design Data
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
doi https://doi.org/10.52842/conf.acadia.2017.330
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2017_033
id caadria2017_033
authors Qu, Tengteng, Zang, Wei, Peng, Zhenwei, Liu, Jun, Li, Weiwei, Zhu, Yun, Zhang, Bin and Wang, Yongsheng
year 2017
title Construction Site Monitoring Using UAV Oblique Photogrammetry and BIM Technologies
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 655-662
doi https://doi.org/10.52842/conf.caadria.2017.655
summary Traditional construction site monitoring primarily relies on a human presence. Automated construction progress monitoring is expected to make this process much more efficient and precise. The planned state of construction (as-planned) must be validated by the actual state (as-built) during automated construction progress monitoring. This research uses an integrated application of high-resolution low-altitude UAV (Unmanned Aerial Vehicle) oblique photogrammetry and Building Information Modeling (BIM) technologies for construction site management. A case study was carried out for a renewable energy development program in the JiaDing District of Shanghai, China. A high-resolution 3D model of the construction site acquired by our multi-motor UAV provides data to illustrate the as-built state of the construction program. Comparison of the UAV-based 3D model (as-built) with the BIM-based 3D model (as-planned) for a specific chimney was used for dynamic construction site monitoring. Our results show 3D illustrations of construction progress. This research demonstrates that the BIM technology in conjunction with the use of UAV photogrammetry provides efficient and precise as-built data collection and illustration of construction progress.
keywords Oblique Photogrammetry; UAV; 3D modeling; BIM; construction site monitoring
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2017_009
id ecaade2017_009
authors Takizawa, Atsushi and Furuta, Airi
year 2017
title 3D Spatial Analysis Method with First-Person Viewpoint by Deep Convolutional Neural Network with Omnidirectional RGB and Depth Images
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 693-702
doi https://doi.org/10.52842/conf.ecaade.2017.2.693
summary The fields of architecture and urban planning widely apply spatial analysis based on images. However, many features can influence the spatial conditions, not all of which can be explicitly defined. In this research, we propose a new deep learning framework for extracting spatial features without explicitly specifying them and use these features for spatial analysis and prediction. As a first step, we establish a deep convolution neural network (DCNN) learning problem with omnidirectional images that include depth images as well as ordinary RGB images. We then use these images as explanatory variables in a game engine to predict a subjects' preference regarding a virtual urban space. DCNNs learn the relationship between the evaluation result and the omnidirectional camera images and we confirm the prediction accuracy of the verification data.
keywords Space evaluation; deep convolutional neural network; omnidirectional image; depth image; Unity; virtual reality
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_496146 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002